Skip to main content
Erschienen in: Cellulose 12/2017

21.09.2017 | Original Paper

Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding

verfasst von: Yuan Chen, Dongbin Fan, Yanming Han, Gaiyun Li, Siqun Wang

Erschienen in: Cellulose | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The length of cellulose nanofibrils (CNFs) is a significant parameter for various applications. The goal of this research was to employ a fabrication method to produce length-controlled CNFs; the chosen technique was enzy-grinding (enzyme pretreatment followed by mechanical grinding). Here, we presented the results of the optimization of the diameter and length, the characterization of the properties of CNFs and nanofilms prepared using these fibrils. The cellulose morphology, crystallinity index (CrI), chemical structure, and thermal stability were investigated as functions of the enzyme loading and hydrolysis time. The results showed that enzy-grinding could effectively reduce the diameter and length of cellulose fibrils. The average diameter was about 8.6 ± 3.6 nm, and the length could be controlled over the range from 0.76 ± 0.38 μm to ≥ 4 μm (i.e. aspect ratios from 43 to ≥ 328). After the grinding process, the CNFs maintained high thermal stability and no change in the chemical structure compared to the original pulp. The transmittance and mechanical properties of the CNF films were strongly dependent on the fibril length. The fabrication of length-controlled CNFs using the enzy-grinding process is meaningful and significant research which could be relevant to the optimization of such materials for various applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akerholm M, Salm NL (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969CrossRef Akerholm M, Salm NL (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969CrossRef
Zurück zum Zitat Chen Y, He Y, Fan D, Han Y, Li G, Wang S (2016) An efficient method for cellulose nanofibrils length shearing via environmentally friendly mixed cellulase pretreatment. J Nanomater 2017. doi:10.1155/2017/1591504 Chen Y, He Y, Fan D, Han Y, Li G, Wang S (2016) An efficient method for cellulose nanofibrils length shearing via environmentally friendly mixed cellulase pretreatment. J Nanomater 2017. doi:10.​1155/​2017/​1591504
Zurück zum Zitat Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565CrossRef Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565CrossRef
Zurück zum Zitat Azizi SM et al (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37(11):4313–4316CrossRef Azizi SM et al (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37(11):4313–4316CrossRef
Zurück zum Zitat Belbekhouche S et al (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83(4):1740–1748CrossRef Belbekhouche S et al (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83(4):1740–1748CrossRef
Zurück zum Zitat Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169PubMedCrossRef Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169PubMedCrossRef
Zurück zum Zitat Brito BS et al (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536CrossRef Brito BS et al (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536CrossRef
Zurück zum Zitat Campbell MG et al (2014) Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods. Materials 7(4):3021–3033PubMedPubMedCentralCrossRef Campbell MG et al (2014) Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods. Materials 7(4):3021–3033PubMedPubMedCentralCrossRef
Zurück zum Zitat Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80PubMedCrossRef Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80PubMedCrossRef
Zurück zum Zitat Du H et al (2016) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the nanofibrils high-pressure homogenization. Ind Crops Prod 94:736–745CrossRef Du H et al (2016) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the nanofibrils high-pressure homogenization. Ind Crops Prod 94:736–745CrossRef
Zurück zum Zitat Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRef Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRef
Zurück zum Zitat Eichhorn S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef Eichhorn S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef
Zurück zum Zitat Fraschini C et al (2014) Critical discussion of light scattering and microscopy techniques for CNC particle sizing. Nord Pulp Pap Res J 29(1):31–40CrossRef Fraschini C et al (2014) Critical discussion of light scattering and microscopy techniques for CNC particle sizing. Nord Pulp Pap Res J 29(1):31–40CrossRef
Zurück zum Zitat Gierlinger N, Schmidt GM (2008) In situ FT-IR microscopic study on enzymatic treamtment of poplar wood cross-sections. Biomacromol 9(8):2194–2201CrossRef Gierlinger N, Schmidt GM (2008) In situ FT-IR microscopic study on enzymatic treamtment of poplar wood cross-sections. Biomacromol 9(8):2194–2201CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, selfassembly, and applications. Chem Rev 110(6):3479–3500PubMedCrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, selfassembly, and applications. Chem Rev 110(6):3479–3500PubMedCrossRef
Zurück zum Zitat Henriksson M et al (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441CrossRef Henriksson M et al (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441CrossRef
Zurück zum Zitat Herrick FW et al (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813 Herrick FW et al (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813
Zurück zum Zitat Jackson JK et al (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6(6):321–330 Jackson JK et al (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6(6):321–330
Zurück zum Zitat Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637CrossRef Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637CrossRef
Zurück zum Zitat Klemm D et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef Klemm D et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef
Zurück zum Zitat Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef
Zurück zum Zitat Kolakovic R et al (2012) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55PubMedCrossRef Kolakovic R et al (2012) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55PubMedCrossRef
Zurück zum Zitat Krässig HA (ed) (1993) Cellulose: structure, accessibility, and reactivity. Gordon and Breach Science, Pennsylvania Krässig HA (ed) (1993) Cellulose: structure, accessibility, and reactivity. Gordon and Breach Science, Pennsylvania
Zurück zum Zitat Lavoine N et al (2014) Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporpous networks of microfibrillated cellulose. Cellulose 21(6):4429–4442CrossRef Lavoine N et al (2014) Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporpous networks of microfibrillated cellulose. Cellulose 21(6):4429–4442CrossRef
Zurück zum Zitat Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294PubMedCrossRef Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294PubMedCrossRef
Zurück zum Zitat Lopez M et al (2010) Enthalpic studies of xyloglucan-cellulose interactions. Biomacromol 11(6):1417–1428CrossRef Lopez M et al (2010) Enthalpic studies of xyloglucan-cellulose interactions. Biomacromol 11(6):1417–1428CrossRef
Zurück zum Zitat Mendez J et al (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44(17):6827–6835CrossRef Mendez J et al (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44(17):6827–6835CrossRef
Zurück zum Zitat Moon RJ et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRef Moon RJ et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRef
Zurück zum Zitat Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68(9):2383–2393CrossRef Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68(9):2383–2393CrossRef
Zurück zum Zitat Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541CrossRef Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541CrossRef
Zurück zum Zitat Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef
Zurück zum Zitat Normand ML, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr Polym 111(20):979–987PubMedCrossRef Normand ML, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr Polym 111(20):979–987PubMedCrossRef
Zurück zum Zitat Qing Y et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97(1):226–234CrossRef Qing Y et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97(1):226–234CrossRef
Zurück zum Zitat Querejeta-Fernández A et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136(12):4788–4793PubMedCrossRef Querejeta-Fernández A et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136(12):4788–4793PubMedCrossRef
Zurück zum Zitat Rabinovich ML, Melnick MS, Bolbova AV (2002) The structure and mechanism of action of cellulolytic enzymes. Biochem Moscow 67(8):850–871CrossRef Rabinovich ML, Melnick MS, Bolbova AV (2002) The structure and mechanism of action of cellulolytic enzymes. Biochem Moscow 67(8):850–871CrossRef
Zurück zum Zitat Rees A et al (2015) 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int 2:168–172 Rees A et al (2015) 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int 2:168–172
Zurück zum Zitat Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138PubMedCrossRef Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138PubMedCrossRef
Zurück zum Zitat Salas C et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396CrossRef Salas C et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396CrossRef
Zurück zum Zitat Segal L et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef Segal L et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef
Zurück zum Zitat Shao Y et al (2015) Use of microfibrillated cellulose/lignosulfonate blend as carbon precursors: impact of hvdrogel rheology on 3D printing. Ind Eng Chem Res 54(43):10575–10582CrossRef Shao Y et al (2015) Use of microfibrillated cellulose/lignosulfonate blend as carbon precursors: impact of hvdrogel rheology on 3D printing. Ind Eng Chem Res 54(43):10575–10582CrossRef
Zurück zum Zitat Shopsowitz KE et al (2014) Biopolymer template glass with a twist: controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystals. Adv Funct Mater 24(3):327–338CrossRef Shopsowitz KE et al (2014) Biopolymer template glass with a twist: controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystals. Adv Funct Mater 24(3):327–338CrossRef
Zurück zum Zitat Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44(2):427–436CrossRef Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44(2):427–436CrossRef
Zurück zum Zitat Siqueira G et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRef Siqueira G et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRef
Zurück zum Zitat Spence KL et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRef Spence KL et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRef
Zurück zum Zitat Yarbrough JM et al (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11(3):3101–3109PubMedCrossRef Yarbrough JM et al (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11(3):3101–3109PubMedCrossRef
Zurück zum Zitat Zhu H et al (2013) Transparent paper: fabrications, properties, and device application. Energy Environ Sci 7(1):269–287CrossRef Zhu H et al (2013) Transparent paper: fabrications, properties, and device application. Energy Environ Sci 7(1):269–287CrossRef
Metadaten
Titel
Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding
verfasst von
Yuan Chen
Dongbin Fan
Yanming Han
Gaiyun Li
Siqun Wang
Publikationsdatum
21.09.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1499-z

Weitere Artikel der Ausgabe 12/2017

Cellulose 12/2017 Zur Ausgabe