Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Lernen aus Daten

verfasst von : Tilman Michaeli, Emanuel Kitzelmann, Stefan Seegerer, Ralf Romeike

Erschienen in: Künstliche Intelligenz für Lehrkräfte

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

In diesem Kapitel werden Grundlagen des maschinellen Lernens erläutert und von wissensbasierten Ansätzen Künstlicher Intelligenz abgegrenzt. Dazu werden verschiedene Ansätze des maschinellen Lernens unterschieden und an Beispielen ausgeführt. Aufbauend hierauf werden gesellschaftliche Bezüge und Implikationen beleuchtet.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
,,Regeln“ wird hier als veranschaulichende Begrifflichkeit gewählt, im weiteren Verlauf dieses Buches wird auch ein technische Definition eingeführt.
 
2
Zu den bekanntesten Metriken gehören die Genauigkeit (bzw. accuracy), die Sensitivität (bzw. recall) und Präzision (bzw. precision).
 
Metadaten
Titel
Lernen aus Daten
verfasst von
Tilman Michaeli
Emanuel Kitzelmann
Stefan Seegerer
Ralf Romeike
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-658-44248-4_3