Skip to main content
Erschienen in:

06.05.2024

Let’s explain crisis: deep multi-scale hierarchical attention framework for crisis-task identification

verfasst von: Shalini Priya, Vaishali Joshi, Joydeep Chandra

Erschienen in: The Journal of Supercomputing | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Emergency services rely heavily on Twitter for early detection of crisis tasks to enhance crisis management systems. However, employing state-of-the-art models often face data sparsity as well as their inadequacy to handle long-range dependencies between tweet tokens. Additionally, the authorities need to gain confidence in the model’s prediction so that the detected task information can be better believed and prioritized. In this study, we present a generalized framework named explainable attentive model for crisis task identification (ExACT) to handle the above mentioned challenges, while identifying crisis task relevant tweets as well as provide the model explainability by utilizing a very small corpus of tweets. The novelty of ExACT is two-fold: (1) Data enrichment has been introduced by nondynamic contextual attributes derived from tweets to overcome the sparsity and improve data quality. (2) Feature enrichment has been incorporated using hierarchical attention at both local and global levels using residual self-attention and correlation attention to capture long-range dependencies. Additionally, LIME based explainability approach added to understand the task important tokens. Experiments reveal that ExACT has a competitive performance improvement over various state-of-the-art models in terms of \(F_1\)-score (\(20\%\) and \(14\%\) respectively) and accuracy (\(14\%\) and \(16\%\) , respectively) across two different crisis tasks infrastructure damage and support signal identification. Consistent performance improvement for two different tasks considered from publicly available crisis event datasets depicts the model’s generalizability. While, LIME supported explainable mechanism in ExACT can identify the important keywords but does not guarantee a high score in terms of plausibility and faithfulness metrics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kavianpour P, Kavianpour M, Jahani E, Ramezani A (2023) A CNN-bilstm model with attention mechanism for earthquake prediction. J Supercomput 79(17):19194–19226CrossRef Kavianpour P, Kavianpour M, Jahani E, Ramezani A (2023) A CNN-bilstm model with attention mechanism for earthquake prediction. J Supercomput 79(17):19194–19226CrossRef
2.
Zurück zum Zitat Madichetty S, Sridevi M (2021) A novel method for identifying the damage assessment tweets during disaster. Fut Gener Comput Syst 116:440–454CrossRef Madichetty S, Sridevi M (2021) A novel method for identifying the damage assessment tweets during disaster. Fut Gener Comput Syst 116:440–454CrossRef
3.
Zurück zum Zitat Khattar A, Quadri S (2023) Multi-source domain adaptation of social media data for disaster management. Multimed Tools Appl 82(6):9083–9111CrossRef Khattar A, Quadri S (2023) Multi-source domain adaptation of social media data for disaster management. Multimed Tools Appl 82(6):9083–9111CrossRef
4.
Zurück zum Zitat Madichetty S, Madisetty S (2023) A roberta based model for identifying the multi-modal informative tweets during disaster. Multimed Tools Appl 82(24):37615–37633CrossRef Madichetty S, Madisetty S (2023) A roberta based model for identifying the multi-modal informative tweets during disaster. Multimed Tools Appl 82(24):37615–37633CrossRef
5.
Zurück zum Zitat Li L, Zhang Q, Wang X, Zhang J, Wang T, Gao TL, Duan W, Tsoi KKF, Wang FY (2020) Characterizing the propagation of situational information in social media during Covid-19 epidemic: a case study on weibo. IEEE Trans Comput Soc Syst 7(2):556–562CrossRef Li L, Zhang Q, Wang X, Zhang J, Wang T, Gao TL, Duan W, Tsoi KKF, Wang FY (2020) Characterizing the propagation of situational information in social media during Covid-19 epidemic: a case study on weibo. IEEE Trans Comput Soc Syst 7(2):556–562CrossRef
6.
Zurück zum Zitat Rudra K, Ghosh S, Ganguly N, Goyal P, Ghosh S (2015) Extracting situational information from microblogs during disaster events: a classification-summarization approach. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. CIKM ’15, pp 583–592 Rudra K, Ghosh S, Ganguly N, Goyal P, Ghosh S (2015) Extracting situational information from microblogs during disaster events: a classification-summarization approach. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. CIKM ’15, pp 583–592
7.
Zurück zum Zitat Priya S, Upadhyaya A, Bhanu M, Kumar Dandapat S, Chandra J (2020) Endea: ensemble based decoupled adversarial learning for identifying infrastructure damage during disasters. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. CIKM ’20, pp 1245–1254 Priya S, Upadhyaya A, Bhanu M, Kumar Dandapat S, Chandra J (2020) Endea: ensemble based decoupled adversarial learning for identifying infrastructure damage during disasters. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. CIKM ’20, pp 1245–1254
8.
Zurück zum Zitat Priya S, Bhanu M, Dandapat SK, Chandra J (2021) Mirroring hierarchical attention in adversary for crisis task identification: Covid-19, hurricane irma. In: 18th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2021, pp 609–620 Priya S, Bhanu M, Dandapat SK, Chandra J (2021) Mirroring hierarchical attention in adversary for crisis task identification: Covid-19, hurricane irma. In: 18th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2021, pp 609–620
9.
Zurück zum Zitat Rudra K, Sharma A, Ganguly N, Imran M (2017) Classifying information from microblogs during epidemics. In: Proceedings of the 2017 International Conference on Digital Health, pp 104–108 Rudra K, Sharma A, Ganguly N, Imran M (2017) Classifying information from microblogs during epidemics. In: Proceedings of the 2017 International Conference on Digital Health, pp 104–108
10.
Zurück zum Zitat Alam F, Ofli F, Imran M, Aupetit M (2018) A twitter tale of three hurricanes: harvey, irma, and maria. In: Boersma K, Tomaszewski BM (eds) Proceedings of the 15th International Conference on Information Systems for Crisis Response and Management Alam F, Ofli F, Imran M, Aupetit M (2018) A twitter tale of three hurricanes: harvey, irma, and maria. In: Boersma K, Tomaszewski BM (eds) Proceedings of the 15th International Conference on Information Systems for Crisis Response and Management
11.
Zurück zum Zitat O’Keefe SEM, Alrashdi RMM (2018) Deep learning and word embeddings for tweet classification for crisis response. In: The 3rd National Computing Colleges Conference O’Keefe SEM, Alrashdi RMM (2018) Deep learning and word embeddings for tweet classification for crisis response. In: The 3rd National Computing Colleges Conference
12.
Zurück zum Zitat Madichetty S (2021) A stacked convolutional neural network for detecting the resource tweets during a disaster. Multimed Tools Appl 80:3927–3949CrossRef Madichetty S (2021) A stacked convolutional neural network for detecting the resource tweets during a disaster. Multimed Tools Appl 80:3927–3949CrossRef
13.
Zurück zum Zitat Alam F, Joty SR, Imran M (2018) Domain adaptation with adversarial training and graph embeddings. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Vol. 1, Long Papers, pp 1077–1087 Alam F, Joty SR, Imran M (2018) Domain adaptation with adversarial training and graph embeddings. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Vol. 1, Long Papers, pp 1077–1087
14.
Zurück zum Zitat Khatua A, Khatua A, Cambria E (2019) A tale of two epidemics: contextual word2vec for classifying twitter streams during outbreaks. Inf Process Manag 56(1):247–257CrossRef Khatua A, Khatua A, Cambria E (2019) A tale of two epidemics: contextual word2vec for classifying twitter streams during outbreaks. Inf Process Manag 56(1):247–257CrossRef
15.
Zurück zum Zitat Koshy R, Elango S (2023) Multimodal tweet classification in disaster response systems using transformer-based bidirectional attention model. Neural Comput Appl 35(2):1607–1627CrossRef Koshy R, Elango S (2023) Multimodal tweet classification in disaster response systems using transformer-based bidirectional attention model. Neural Comput Appl 35(2):1607–1627CrossRef
16.
Zurück zum Zitat Kshirsagar R, Morris R, Bowman SR (2017) Detecting and explaining crisis. CLPsych 2017:66 Kshirsagar R, Morris R, Bowman SR (2017) Detecting and explaining crisis. CLPsych 2017:66
17.
Zurück zum Zitat Mathew B, Saha P, Yimam SM, Biemann C, Goyal P, Mukherjee A (2020) Hatexplain: a benchmark dataset for explainable hate speech detection. arXiv preprint arXiv:2012.10289 Mathew B, Saha P, Yimam SM, Biemann C, Goyal P, Mukherjee A (2020) Hatexplain: a benchmark dataset for explainable hate speech detection. arXiv preprint arXiv:​2012.​10289
18.
Zurück zum Zitat Schild L, Ling C, Blackburn J, Stringhini G, Zhang Y, Zannettou S (2020) "Go eat a bat, chang!": an early look on the emergence of sinophobic behavior on web communities in the face of Covid-19. arXiv preprint arXiv:2004.04046 Schild L, Ling C, Blackburn J, Stringhini G, Zhang Y, Zannettou S (2020) "Go eat a bat, chang!": an early look on the emergence of sinophobic behavior on web communities in the face of Covid-19. arXiv preprint arXiv:​2004.​04046
19.
Zurück zum Zitat Jahanbin K, Rahmanian V (2020) Using twitter and web news mining to predict Covid-19 outbreak. Asian Pacif J Trop Med 13:378–380CrossRef Jahanbin K, Rahmanian V (2020) Using twitter and web news mining to predict Covid-19 outbreak. Asian Pacif J Trop Med 13:378–380CrossRef
20.
Zurück zum Zitat Singh L, Bansal S, Bode L, Budak C, Chi G, Kawintiranon K, Padden C, Vanarsdall R, Vraga E, Wang Y (2020) A first look at covid-19 information and misinformation sharing on twitter. arXiv preprint arXiv:2003.13907 Singh L, Bansal S, Bode L, Budak C, Chi G, Kawintiranon K, Padden C, Vanarsdall R, Vraga E, Wang Y (2020) A first look at covid-19 information and misinformation sharing on twitter. arXiv preprint arXiv:​2003.​13907
21.
Zurück zum Zitat Ghosh S, Rudra K, Ghosh S, Ganguly N, Podder S, Balani N, Dubash N (2019) Identifying multi-dimensional information from microblogs during epidemics. In: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, pp 224–230 Ghosh S, Rudra K, Ghosh S, Ganguly N, Podder S, Balani N, Dubash N (2019) Identifying multi-dimensional information from microblogs during epidemics. In: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, pp 224–230
22.
Zurück zum Zitat Adel G, Wang Y (2019) Arabic twitter corpus for crisis response messages classification. In: Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, pp 498–503 Adel G, Wang Y (2019) Arabic twitter corpus for crisis response messages classification. In: Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, pp 498–503
23.
Zurück zum Zitat Verma S, Vieweg S, Corvey WJ, Palen L, Martin JH, Palmer M, Schram A, Anderson KM (2011) Natural language processing to the rescue? Extracting "situational awareness" tweets during mass emergency. In: ICWSM Verma S, Vieweg S, Corvey WJ, Palen L, Martin JH, Palmer M, Schram A, Anderson KM (2011) Natural language processing to the rescue? Extracting "situational awareness" tweets during mass emergency. In: ICWSM
24.
Zurück zum Zitat Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) Aidr: artificial intelligence for disaster response. In: Proceedings of the 23rd International Conference on World Wide Web, pp 159–162 Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) Aidr: artificial intelligence for disaster response. In: Proceedings of the 23rd International Conference on World Wide Web, pp 159–162
25.
Zurück zum Zitat McCreadie R, Buntain C, Soboroff I (2019) Trec incident streams: finding actionable information on social media McCreadie R, Buntain C, Soboroff I (2019) Trec incident streams: finding actionable information on social media
26.
Zurück zum Zitat Barnwal D, Ghelani S, Krishna R, Basu M, Ghosh S (2019) Identifying fact-checkable microblogs during disasters: A classification-ranking approach. In: Proceedings of the 20th International Conference on Distributed Computing and Networking. ICDCN ’19, pp 389–392 Barnwal D, Ghelani S, Krishna R, Basu M, Ghosh S (2019) Identifying fact-checkable microblogs during disasters: A classification-ranking approach. In: Proceedings of the 20th International Conference on Distributed Computing and Networking. ICDCN ’19, pp 389–392
27.
Zurück zum Zitat Basu M, Shandilya A, Khosla P, Ghosh K, Ghosh S (2019) Extracting resource needs and availabilities from microblogs for aiding post-disaster relief operations. IEEE Trans Comput Soc Syst 6(3):604–618CrossRef Basu M, Shandilya A, Khosla P, Ghosh K, Ghosh S (2019) Extracting resource needs and availabilities from microblogs for aiding post-disaster relief operations. IEEE Trans Comput Soc Syst 6(3):604–618CrossRef
28.
Zurück zum Zitat Madichetty S (2020) Improved classification of crisis-related data on twitter using contextual representations. Proc Comput Sci 167:962–968CrossRef Madichetty S (2020) Improved classification of crisis-related data on twitter using contextual representations. Proc Comput Sci 167:962–968CrossRef
29.
Zurück zum Zitat Madichetty S, Sridevi M (2019) Disaster damage assessment from the tweets using the combination of statistical features and informative words. Soc Netw Anal Min 9(1):42CrossRef Madichetty S, Sridevi M (2019) Disaster damage assessment from the tweets using the combination of statistical features and informative words. Soc Netw Anal Min 9(1):42CrossRef
30.
Zurück zum Zitat Madichetty S, Sridevi M (2020) A stacked convolutional neural network for detecting the resource tweets during a disaster. Multimed Tools Appl 80(3):3927–3949CrossRef Madichetty S, Sridevi M (2020) A stacked convolutional neural network for detecting the resource tweets during a disaster. Multimed Tools Appl 80(3):3927–3949CrossRef
31.
Zurück zum Zitat Priya S, Bhanu M, Dandapat SK, Ghosh K, Chandra J (2018) Characterizing infrastructure damage after earthquake: a split-query based ir approach. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE, pp 202–209 Priya S, Bhanu M, Dandapat SK, Ghosh K, Chandra J (2018) Characterizing infrastructure damage after earthquake: a split-query based ir approach. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE, pp 202–209
32.
Zurück zum Zitat Priya S, Bhanu M, Dandapat SK, Ghosh K, Chandra J (2020) Taqe: tweet retrieval-based infrastructure damage assessment during disasters. IEEE Trans Comput Soc Syst 7(2):389–403CrossRef Priya S, Bhanu M, Dandapat SK, Ghosh K, Chandra J (2020) Taqe: tweet retrieval-based infrastructure damage assessment during disasters. IEEE Trans Comput Soc Syst 7(2):389–403CrossRef
33.
Zurück zum Zitat Ahmed M, Hossain MS, Islam RU, Andersson K (2022) Explainable text classification model for Covid-19 fake news detection. J Internet Serv Inf Secur (JISIS) 12(2):51–69 Ahmed M, Hossain MS, Islam RU, Andersson K (2022) Explainable text classification model for Covid-19 fake news detection. J Internet Serv Inf Secur (JISIS) 12(2):51–69
34.
Zurück zum Zitat Kumar D, Kumar N, Mishra S (2021) Nlp@ niser: classification of covid19 tweets containing symptoms. In: Proceedings of the Sixth Social Media Mining for Health (# SMM4H) Workshop and Shared Task, pp 102–104 Kumar D, Kumar N, Mishra S (2021) Nlp@ niser: classification of covid19 tweets containing symptoms. In: Proceedings of the Sixth Social Media Mining for Health (# SMM4H) Workshop and Shared Task, pp 102–104
35.
Zurück zum Zitat Rustam F, Khalid M, Aslam W, Rupapara V, Mehmood A, Choi GS (2021) A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis. PLoS ONE 16(2):0245909CrossRef Rustam F, Khalid M, Aslam W, Rupapara V, Mehmood A, Choi GS (2021) A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis. PLoS ONE 16(2):0245909CrossRef
37.
Zurück zum Zitat Paul NR, Sahoo D, Balabantaray RC (2023) Classification of crisis-related data on twitter using a deep learning-based framework. Multimed Tools Appl 82(6):8921–8941CrossRef Paul NR, Sahoo D, Balabantaray RC (2023) Classification of crisis-related data on twitter using a deep learning-based framework. Multimed Tools Appl 82(6):8921–8941CrossRef
38.
Zurück zum Zitat Kothuru S, Santhanavijayan A (2023) Identifying Covid-19 English informative tweets using limited labelled data. Soc Netw Anal Min 13(1):25CrossRef Kothuru S, Santhanavijayan A (2023) Identifying Covid-19 English informative tweets using limited labelled data. Soc Netw Anal Min 13(1):25CrossRef
39.
Zurück zum Zitat Asinthara K, Jayan M, Jacob L (2023) Categorizing disaster tweets using learning based models for emergency crisis management. In: 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE, vol 1, pp 1133–1138 Asinthara K, Jayan M, Jacob L (2023) Categorizing disaster tweets using learning based models for emergency crisis management. In: 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE, vol 1, pp 1133–1138
40.
Zurück zum Zitat Zou HP, Zhou Y, Caragea C, Caragea D (2023) Semi-supervised few-shot learning for fine-grained disaster tweet classification. In: Proceedings of the 20th International ISCRAM Conference, ISCRAM 2023, pp 385–395 Zou HP, Zhou Y, Caragea C, Caragea D (2023) Semi-supervised few-shot learning for fine-grained disaster tweet classification. In: Proceedings of the 20th International ISCRAM Conference, ISCRAM 2023, pp 385–395
41.
Zurück zum Zitat Kaufhold M-A, Bayer M, Reuter C (2020) Rapid relevance classification of social media posts in disasters and emergencies: a system and evaluation featuring active, incremental and online learning. Inf Process Manag 57(1):102132CrossRef Kaufhold M-A, Bayer M, Reuter C (2020) Rapid relevance classification of social media posts in disasters and emergencies: a system and evaluation featuring active, incremental and online learning. Inf Process Manag 57(1):102132CrossRef
42.
Zurück zum Zitat Imran M, Castillo C, Diaz F, Vieweg S (2015) Processing social media messages in mass emergency: a survey. ACM Comput Surv (CSUR) 47(4):1–38CrossRef Imran M, Castillo C, Diaz F, Vieweg S (2015) Processing social media messages in mass emergency: a survey. ACM Comput Surv (CSUR) 47(4):1–38CrossRef
43.
Zurück zum Zitat Li X, Caragea D, Zhang H, Imran M (2019) Localizing and quantifying infrastructure damage using class activation mapping approaches. Soc Netw Anal Min 9(1):44CrossRef Li X, Caragea D, Zhang H, Imran M (2019) Localizing and quantifying infrastructure damage using class activation mapping approaches. Soc Netw Anal Min 9(1):44CrossRef
45.
Zurück zum Zitat Yandrapati PB, Eswari R (2024) Classifying informative tweets using feature enhanced pre-trained language model. Soc Netw Anal Min 14(1):1–18CrossRef Yandrapati PB, Eswari R (2024) Classifying informative tweets using feature enhanced pre-trained language model. Soc Netw Anal Min 14(1):1–18CrossRef
46.
Zurück zum Zitat Bonta V, Janardhan NKN (2019) A comprehensive study on lexicon based approaches for sentiment analysis. Asian J Comput Sci Technol 8(S2):1–6CrossRef Bonta V, Janardhan NKN (2019) A comprehensive study on lexicon based approaches for sentiment analysis. Asian J Comput Sci Technol 8(S2):1–6CrossRef
47.
Zurück zum Zitat Madhu S (2018) An approach to analyze suicidal tendency in blogs and tweets using sentiment analysis. Int J Sci Res Comput Sci Eng 6(4):34–36MathSciNet Madhu S (2018) An approach to analyze suicidal tendency in blogs and tweets using sentiment analysis. Int J Sci Res Comput Sci Eng 6(4):34–36MathSciNet
48.
Zurück zum Zitat Zhang X, Han L, Zhu W, Sun L, Zhang D (2021) An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri. IEEE J Biomed Health Inform 26(11):5289–5297CrossRef Zhang X, Han L, Zhu W, Sun L, Zhang D (2021) An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri. IEEE J Biomed Health Inform 26(11):5289–5297CrossRef
49.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv preprint arXiv:1706.03762 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv preprint arXiv:​1706.​03762
50.
Zurück zum Zitat Qazi U, Imran M, Ofli F (2020) Geocov19: a dataset of hundreds of millions of multilingual Covid-19 tweets with location information. SIGSPATIAL Spec 12(1):6–15CrossRef Qazi U, Imran M, Ofli F (2020) Geocov19: a dataset of hundreds of millions of multilingual Covid-19 tweets with location information. SIGSPATIAL Spec 12(1):6–15CrossRef
51.
Zurück zum Zitat Rudra K, Sharma A, Ganguly N, Imran M (2018) Classifying and summarizing information from microblogs during epidemics. Inf Syst Front 20(5):933–948CrossRef Rudra K, Sharma A, Ganguly N, Imran M (2018) Classifying and summarizing information from microblogs during epidemics. Inf Syst Front 20(5):933–948CrossRef
52.
Zurück zum Zitat Alam F, Ofli F, Imran M (2018) Crisismmd: multimodal twitter datasets from natural disasters. In: AAAI Conference on Web and Social Media (ICWSM). AAAI, Stanford, California, USA. AAAI Alam F, Ofli F, Imran M (2018) Crisismmd: multimodal twitter datasets from natural disasters. In: AAAI Conference on Web and Social Media (ICWSM). AAAI, Stanford, California, USA. AAAI
53.
Zurück zum Zitat Olteanu A, Vieweg S, Castillo C (2015) What to expect when the unexpected happens: social media communications across crises. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp 994–1009 Olteanu A, Vieweg S, Castillo C (2015) What to expect when the unexpected happens: social media communications across crises. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp 994–1009
55.
Zurück zum Zitat Nguyen DT, Al-Mannai K, Joty SR, Sajjad H, Imran M, Mitra P (2017) Robust classification of crisis-related data on social networks using convolutional neural networks. ICWSM 31(3):632–635CrossRef Nguyen DT, Al-Mannai K, Joty SR, Sajjad H, Imran M, Mitra P (2017) Robust classification of crisis-related data on social networks using convolutional neural networks. ICWSM 31(3):632–635CrossRef
56.
Zurück zum Zitat Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:​1810.​04805
57.
Zurück zum Zitat DeYoung J, Jain S, Rajani NF, Lehman E, Xiong C, Socher R, Wallace BC (2019) Eraser: a benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429 DeYoung J, Jain S, Rajani NF, Lehman E, Xiong C, Socher R, Wallace BC (2019) Eraser: a benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:​1911.​03429
58.
Zurück zum Zitat Chan CS, Kong H, Guanqing L (2022) A comparative study of faithfulness metrics for model interpretability methods. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, pp 5029–5038 Chan CS, Kong H, Guanqing L (2022) A comparative study of faithfulness metrics for model interpretability methods. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, pp 5029–5038
Metadaten
Titel
Let’s explain crisis: deep multi-scale hierarchical attention framework for crisis-task identification
verfasst von
Shalini Priya
Vaishali Joshi
Joydeep Chandra
Publikationsdatum
06.05.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 12/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06150-5