Skip to main content
Erschienen in:

04.10.2021

Levenberg–Marquardt –LSTM based Efficient Rear-end Crash Risk Prediction System Optimization

verfasst von: D. Deva Hema, K. Ashok Kumar

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Almost 1.3 million casualties are reported round a calendar year due to road accidents. Advanced collision avoidance systems play major role in predicting the collision risk to avoid accidents. The existing deep learning algorithms are unable to predict the crash risk efficiently. In the existing system, Long Short Term Memory algorithm is used to predict the crash risk where weights are not optimized. The objective is to predict the rear end collision risk with optimized weight by combining Long Short Term Memory(LSTM) with Levenberg–Marquardt (LM) algorithms. The proposed algorithm predicts the collision risk considering vehicle, driver related factors, and temporal dependencies. Next Generation Simulation Project (NGSIM) dataset is used to evaluate the proposed model. The performance of the proposed system is compared with the performance of Long Short Term Memory and Back Propagation Neural Network. 95.6% of accuracy is achieved by LM-LSTM based Time series Deep Network Model. The prediction accuracy has been improved considerably than the existing algorithms. There is the drastic improvement in minimization of false alarm and missed alarm rate. The main advantage of the proposed system is that it will present warning at the time of high collision risk and it helps drivers to prevent from accident.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Wang, P., Rau, P.-L.P., Salvendy, G.: Road Safety Research in China: Review and Appraisal. Traffic Inj. Prev. 11(4), 425–432 (2010)CrossRef Wang, P., Rau, P.-L.P., Salvendy, G.: Road Safety Research in China: Review and Appraisal. Traffic Inj. Prev. 11(4), 425–432 (2010)CrossRef
2.
Zurück zum Zitat Hurt, H.H.: “Motorcycle Accident Cause Factors and Identification of Countermeasures: Appendix.” The Administration (1981) Hurt, H.H.: “Motorcycle Accident Cause Factors and Identification of Countermeasures: Appendix.” The Administration (1981)
3.
Zurück zum Zitat Chen, L.-W., Chou, P.-C.: BIG-CCA: Beacon-Less, Infrastructure-Less, and GPS-Less Cooperative Collision Avoidance Based on Vehicular Sensor Networks. IEEE Trans. Syst. Man Cybern. Syst. 46(11), 1518–1528 (2016)CrossRef Chen, L.-W., Chou, P.-C.: BIG-CCA: Beacon-Less, Infrastructure-Less, and GPS-Less Cooperative Collision Avoidance Based on Vehicular Sensor Networks. IEEE Trans. Syst. Man Cybern. Syst. 46(11), 1518–1528 (2016)CrossRef
4.
Zurück zum Zitat Seiler, J.K.H.P., Song, B.: Development of a collision avoidance system. J. Passeng. Cars. 107, 1334–1340 (1998) Seiler, J.K.H.P., Song, B.: Development of a collision avoidance system. J. Passeng. Cars. 107, 1334–1340 (1998)
5.
Zurück zum Zitat Ashokkumar, K., Sam, B., Arshadprabhu, R.: and Britto: “Cloud Based Intelligent Transport System.” Procedia Comput. Sci. 50, 58–63 (2015)CrossRef Ashokkumar, K., Sam, B., Arshadprabhu, R.: and Britto: “Cloud Based Intelligent Transport System.” Procedia Comput. Sci. 50, 58–63 (2015)CrossRef
6.
Zurück zum Zitat Yu, R., Abdel-Aty, M.: Utilizing support vector machine in real-time crash risk evaluation. Accid. Anal. Prev. 51, 252–259 (2013)CrossRef Yu, R., Abdel-Aty, M.: Utilizing support vector machine in real-time crash risk evaluation. Accid. Anal. Prev. 51, 252–259 (2013)CrossRef
7.
Zurück zum Zitat McDonald, A.B., McGehee, D.V., Chrysler, S.T., Askelson, N.M., Angell, L.S., Seppelt, B.D.: National Survey Identifying Gaps in Consumer Knowledge of Advanced Vehicle Safety Systems. Transp. Res. Rec. J. Transp. Res. Board. 2559(1), 1–6 (2016)CrossRef McDonald, A.B., McGehee, D.V., Chrysler, S.T., Askelson, N.M., Angell, L.S., Seppelt, B.D.: National Survey Identifying Gaps in Consumer Knowledge of Advanced Vehicle Safety Systems. Transp. Res. Rec. J. Transp. Res. Board. 2559(1), 1–6 (2016)CrossRef
8.
Zurück zum Zitat Deva Hema, D.K.A.K. D.: “Hyperparameter Optimization Of LSTM Based Driver’s Aggressive Behavior Prediction Model.” International Conference on Artificial Intelligence and Smart Systems (ICAIS 2021). pp. 751–756. Coimbatore: IEEE (2021) Deva Hema, D.K.A.K. D.: “Hyperparameter Optimization Of LSTM Based Driver’s Aggressive Behavior Prediction Model.” International Conference on Artificial Intelligence and Smart Systems (ICAIS 2021). pp. 751–756. Coimbatore: IEEE (2021)
9.
Zurück zum Zitat Veeramuthu, A., Meenakshi, S., Ashok Kumar, K.: “A neural network based deep learning approach for efficient segmentation of brain tumor medical image data. J. Intell. Fuzzy Syst. 36(5), 4227–4234 (2019)CrossRef Veeramuthu, A., Meenakshi, S., Ashok Kumar, K.: “A neural network based deep learning approach for efficient segmentation of brain tumor medical image data. J. Intell. Fuzzy Syst. 36(5), 4227–4234 (2019)CrossRef
10.
Zurück zum Zitat Minderhoud, M.M., Bovy, P.H.L.: Extended time-to-collision measures for road traffic safety assessment. Accid. Anal. Prev. 33(1), 89–97 (2001)CrossRef Minderhoud, M.M., Bovy, P.H.L.: Extended time-to-collision measures for road traffic safety assessment. Accid. Anal. Prev. 33(1), 89–97 (2001)CrossRef
11.
Zurück zum Zitat Bella, F., Russo, R.: A Collision Warning System for rear-end collision: a driving simulator study. Procedia - Soc. Behav. Sci. 20, 676–686 (2011)CrossRef Bella, F., Russo, R.: A Collision Warning System for rear-end collision: a driving simulator study. Procedia - Soc. Behav. Sci. 20, 676–686 (2011)CrossRef
12.
Zurück zum Zitat Zhang, J., Wang, Y., Lu, G.: Impact of heterogeneity of car-following behavior on rear-end crash risk. Accid. Anal. Prev. 125, 275–289 (2019)CrossRef Zhang, J., Wang, Y., Lu, G.: Impact of heterogeneity of car-following behavior on rear-end crash risk. Accid. Anal. Prev. 125, 275–289 (2019)CrossRef
13.
Zurück zum Zitat Chen, C., Liu, X., Chen, H.-H., Li, M., Zhao, L.: A Rear-End Collision Risk Evaluation and Control Scheme Using a Bayesian Network Model. IEEE Trans. Intell. Transp. Syst. 20(1), 264–284 (2019)CrossRef Chen, C., Liu, X., Chen, H.-H., Li, M., Zhao, L.: A Rear-End Collision Risk Evaluation and Control Scheme Using a Bayesian Network Model. IEEE Trans. Intell. Transp. Syst. 20(1), 264–284 (2019)CrossRef
14.
Zurück zum Zitat Arbabzadeh, N., Jafari, M.: A Data-Driven Approach for Driving Safety Risk Prediction Using Driver Behavior and Roadway Information Data. IEEE Trans. Intell. Transp. Syst. 19(2), 446–460 (2018)CrossRef Arbabzadeh, N., Jafari, M.: A Data-Driven Approach for Driving Safety Risk Prediction Using Driver Behavior and Roadway Information Data. IEEE Trans. Intell. Transp. Syst. 19(2), 446–460 (2018)CrossRef
15.
Zurück zum Zitat Hossain, M., Muromachi, Y.: A Bayesian network based framework for real-time crash prediction on the basic freeway segments of urban expressways. Accid. Anal. Prev. 45, 373–381 (2012)CrossRef Hossain, M., Muromachi, Y.: A Bayesian network based framework for real-time crash prediction on the basic freeway segments of urban expressways. Accid. Anal. Prev. 45, 373–381 (2012)CrossRef
16.
Zurück zum Zitat Elamrani Abou Elassad, Z., Mousannif, H., and Al Moatassime, H.: “A real-time crash prediction fusion framework: An imbalance-aware strategy for collision avoidance systems.” Transp. Res. Part C Emerg. Technol. 118, 102708 (2020) Elamrani Abou Elassad, Z., Mousannif, H., and Al Moatassime, H.: “A real-time crash prediction fusion framework: An imbalance-aware strategy for collision avoidance systems.” Transp. Res. Part C Emerg. Technol. 118, 102708 (2020)
17.
Zurück zum Zitat Dong, C., Shao, C., Li, J., Xiong, Z.: An Improved Deep Learning Model for Traffic Crash Prediction. J. Adv. Transp. 2018, 1–13 (2018) Dong, C., Shao, C., Li, J., Xiong, Z.: An Improved Deep Learning Model for Traffic Crash Prediction. J. Adv. Transp. 2018, 1–13 (2018)
18.
Zurück zum Zitat Lee, D., Yeo, H.: Real-Time Rear-End Collision-Warning System Using a Multilayer Perceptron Neural Network. IEEE Trans. Intell. Transp. Syst. 17(11), 3087–3097 (2016)CrossRef Lee, D., Yeo, H.: Real-Time Rear-End Collision-Warning System Using a Multilayer Perceptron Neural Network. IEEE Trans. Intell. Transp. Syst. 17(11), 3087–3097 (2016)CrossRef
19.
Zurück zum Zitat Wang, J., Kong, Y., Fu, T.: Expressway crash risk prediction using back propagation neural network: A brief investigation on safety resilience. Accid. Anal. Prev. 124, 180–192 (2019)CrossRef Wang, J., Kong, Y., Fu, T.: Expressway crash risk prediction using back propagation neural network: A brief investigation on safety resilience. Accid. Anal. Prev. 124, 180–192 (2019)CrossRef
20.
Zurück zum Zitat Fu, Y., Li, C., Luan, T.H., Zhang, Y., Yu, F.R.: Graded Warning for Rear-End Collision: An Artificial Intelligence-Aided Algorithm. IEEE Trans. Intell. Transp. Syst. 21(2), 565–579 (2020)CrossRef Fu, Y., Li, C., Luan, T.H., Zhang, Y., Yu, F.R.: Graded Warning for Rear-End Collision: An Artificial Intelligence-Aided Algorithm. IEEE Trans. Intell. Transp. Syst. 21(2), 565–579 (2020)CrossRef
21.
Zurück zum Zitat Wei, Z., Xiang, S., Xuan, D., and Xu, L.: “An Adaptive Vehicle Rear-End Collision Warning Algorithm Based on Neural Network.” International Conference on Information and Management Engineering ICCIC 2011. pp. 305–314. Berlin, Heidelberg: Springer (2011) Wei, Z., Xiang, S., Xuan, D., and Xu, L.: “An Adaptive Vehicle Rear-End Collision Warning Algorithm Based on Neural Network.” International Conference on Information and Management Engineering ICCIC 2011. pp. 305–314. Berlin, Heidelberg: Springer (2011)
22.
Zurück zum Zitat Zheng, Z., Yang, Y., Liu, J., Dai, H.-N., Zhang, Y.: Deep and Embedded Learning Approach for Traffic Flow Prediction in Urban Informatics. IEEE Trans. Intell. Transp. Syst. 20(10), 3927–3939 (2019)CrossRef Zheng, Z., Yang, Y., Liu, J., Dai, H.-N., Zhang, Y.: Deep and Embedded Learning Approach for Traffic Flow Prediction in Urban Informatics. IEEE Trans. Intell. Transp. Syst. 20(10), 3927–3939 (2019)CrossRef
23.
Zurück zum Zitat Yuan, J., Abdel-Aty, M., Gong, Y., Cai, Q.: Real-Time Crash Risk Prediction using Long Short-Term Memory Recurrent Neural Network. Transp. Res. Rec. J. Transp. Res. Board. 2673(4), 314–326 (2019)CrossRef Yuan, J., Abdel-Aty, M., Gong, Y., Cai, Q.: Real-Time Crash Risk Prediction using Long Short-Term Memory Recurrent Neural Network. Transp. Res. Rec. J. Transp. Res. Board. 2673(4), 314–326 (2019)CrossRef
24.
Zurück zum Zitat Mammadli, S.: Financial time series prediction using artificial neural network based on Levenberg-Marquardt algorithm. Procedia Comput. Sci. 120, 602–607 (2017)CrossRef Mammadli, S.: Financial time series prediction using artificial neural network based on Levenberg-Marquardt algorithm. Procedia Comput. Sci. 120, 602–607 (2017)CrossRef
25.
Zurück zum Zitat Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms. J. Electron Spectros. Relat. Phenomena. 227, 31–39 (2018)CrossRef Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms. J. Electron Spectros. Relat. Phenomena. 227, 31–39 (2018)CrossRef
26.
Zurück zum Zitat Wu, Y., Abdel-Aty, M., Cai, Q., Lee, J., Park, J.: Developing an algorithm to assess the rear-end collision risk under fog conditions using real-time data. Transp. Res. Part C Emerg. Technol. 87, 11–25 (2018)CrossRef Wu, Y., Abdel-Aty, M., Cai, Q., Lee, J., Park, J.: Developing an algorithm to assess the rear-end collision risk under fog conditions using real-time data. Transp. Res. Part C Emerg. Technol. 87, 11–25 (2018)CrossRef
27.
Zurück zum Zitat American Association of State Highway and Transportation Officials: A policy on geometric design of highways and streets. American Association of State Highway and Transportation Officials, Washington, DC (2011) American Association of State Highway and Transportation Officials: A policy on geometric design of highways and streets. American Association of State Highway and Transportation Officials, Washington, DC (2011)
28.
Zurück zum Zitat Cheong, K.H., Koh, J.M.: A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization. Ultramicroscopy 202, 100–106 (2019)CrossRef Cheong, K.H., Koh, J.M.: A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization. Ultramicroscopy 202, 100–106 (2019)CrossRef
Metadaten
Titel
Levenberg–Marquardt –LSTM based Efficient Rear-end Crash Risk Prediction System Optimization
verfasst von
D. Deva Hema
K. Ashok Kumar
Publikationsdatum
04.10.2021
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 1/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-021-00273-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.