Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

02.05.2018

Leveraging multi-aspect time-related influence in location recommendation

Zeitschrift:
World Wide Web
Autoren:
Saeid Hosseini, Hongzhi Yin, Xiaofang Zhou, Shazia Sadiq, Mohammad Reza Kangavari, Ngai-Man Cheung
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11280-018-0573-2) contains supplementary material, which is available to authorized users.
This article belongs to the Topical Collection: Special Issue on Geo-Social Computing
Guest Editors: Guandong Xu, Wen-Chih Peng, Hongzhi Yin, Zi (Helen) Huang

Abstract

Point-Of-Interest (POI) recommendation aims to mine a user’s visiting history and find her/his potentially preferred places. Although location recommendation methods have been studied and improved pervasively, the challenges w.r.t employing various influences including temporal aspect still remain unresolved. Inspired by the fact that time includes numerous granular slots (e.g. minute, hour, day, week and etc.), in this paper, we define a new problem to perform recommendation through exploiting all diversified temporal factors. In particular, we argue that most existing methods only focus on a limited number of time-related features and neglect others. Furthermore, considering a specific granularity (e.g. time of a day) in recommendation cannot always apply to each user or each dataset. To address the challenges, we propose a probabilistic generative model, named after Multi-aspect Time-related Influence (MATI) to promote the effectiveness of the location (POI) recommendation task. We also develop an effective optimization algorithm based on Expectation Maximization (EM). Our MATI model firstly detects a user’s temporal multivariate orientation using her check-in log in Location-based Social Networks(LBSNs). It then performs recommendation using temporal correlations between the user and proposed locations. Our method is applicable to various types of the recommendation models and can work efficiently in multiple time-scales. Extensive experimental results on two large-scale LBSN datasets verify the effectiveness of our method over other competitors. Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Information filtering; H.2.8 [Database Applications]: Data mining; J.4 [Computer Applications]: Social and Behavior Sciences

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Literatur
Über diesen Artikel

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise