Skip to main content
Erschienen in: Data Mining and Knowledge Discovery 5-6/2014

01.09.2014

Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering

verfasst von: Annalisa Appice, Donato Malerba

Erschienen in: Data Mining and Knowledge Discovery | Ausgabe 5-6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays ubiquitous sensor stations are deployed worldwide, in order to measure several geophysical variables (e.g. temperature, humidity, light) for a growing number of ecological and industrial processes. Although these variables are, in general, measured over large zones and long (potentially unbounded) periods of time, stations cannot cover any space location. On the other hand, due to their huge volume, data produced cannot be entirely recorded for future analysis. In this scenario, summarization, i.e. the computation of aggregates of data, can be used to reduce the amount of produced data stored on the disk, while interpolation, i.e. the estimation of unknown data in each location of interest, can be used to supplement station records. We illustrate a novel data mining solution, named interpolative clustering, that has the merit of addressing both these tasks in time-evolving, multivariate geophysical applications. It yields a time-evolving clustering model, in order to summarize geophysical data and computes a weighted linear combination of cluster prototypes, in order to predict data. Clustering is done by accounting for the local presence of the spatial autocorrelation property in the geophysical data. Weights of the linear combination are defined, in order to reflect the inverse distance of the unseen data to each cluster geometry. The cluster geometry is represented through shape-dependent sampling of geographic coordinates of clustered stations. Experiments performed with several data collections investigate the trade-off between the summarization capability and predictive accuracy of the presented interpolative clustering algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The predictive clustering framework is originally defined in Blockeel et al. (1998), in order to combine clustering problems and classification/regression problems. The predictive inference is performed by distinguishing between target variables and explanatory variables. Target variables are considered when evaluating similarity between training data such that training examples with similar target values are grouped in the same cluster, while training examples with dissimilar target values are grouped in separate clusters. Explanatory variables are used to generate a symbolic description of the clusters. Although the algorithm presented in Blockeel et al. (1998) can be, in principle, run by considering the same set of variables for both explanatory and target roles, this case is not investigated in the original study.
 
2
Inverse distance weighting is a common interpolation algorithm. It has several advantages that endorse its widespread use in geostatistics (Li and Revesz 2002; Karydas et al. 2009; Li et al. 2011): simplicity of implementation; lack of tunable parameters; ability to interpolate scattered data and work on any grid without suffering from multicollinearity.
 
3
We can extend this representation of a sensor network by considering a multi-dimensional representation of space. In the multi-dimensional case, multiple variables will be used to identify the location of a station. These multiple variables will be taken into account when computing the distance between sensors.
 
4
In the on-line learning phase, missing observations of a variable are interpolated in the data snapshot by using the inverse distance weighted sum of nearby known data in the row.
 
5
The spherical law of cosines is used, in order to approximate the geographical distance between the geographic coordinates (e.g. latitude and longitude) of two sensors.
 
6
The time cost of computing the local indicators of the spatial autocorrelation property can be made subquadratic by using a spatial data structure, in order to maintain, for each sensor in the network, the sphere of its neighbours. The structure will be updated only when a new sensor is either switched-on or switched-off in the network.
 
7
The quadtree decomposition of a cluster divides recursively a cluster quadrant into four subquadrants until final quadrants are determined. As we plan to compute \(Np^{\%}\) final quadrants, the number of levels of this quadtree decomposition is about \(\log _4(Np^{\%})\).
 
9
We compute RRMSE, in order to scale the error of a target variable with the domain size of the variable.
 
10
We note that the local indicators, which are computed by accounting for the pairwise comparison between neighbor stations, can be precomputed before building the tree. Thus, only the variance reduction of local indicators is evaluated over each node. On the other hand, MoranVar computes the global indicator of the spatial autocorrelation over each node. This requires the computation of the pairwise comparison between the neighbor stations that fall in the present node. As neighbors may change in number throughout the tree, the global measure has to be recomputed at each node.
 
Literatur
Zurück zum Zitat Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of 29th international conference on very large data bases (VLDB 2003), pp 81–92 Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of 29th international conference on very large data bases (VLDB 2003), pp 81–92
Zurück zum Zitat Aggarwal CC, Han J, Wang J, Yu PS (2007) On clustering massive data streams: a summarization paradigm. In: Advances in database systems: data streams models and algorithms (book chapter), vol 31. Springer-US, pp 9–38 Aggarwal CC, Han J, Wang J, Yu PS (2007) On clustering massive data streams: a summarization paradigm. In: Advances in database systems: data streams models and algorithms (book chapter), vol 31. Springer-US, pp 9–38
Zurück zum Zitat Aho T, Zenko B, Dzeroski S, Elomaa T (2012) Multi-target regression with rule ensembles. J Mach Learn Res 2(13):2367–2407MathSciNet Aho T, Zenko B, Dzeroski S, Elomaa T (2012) Multi-target regression with rule ensembles. J Mach Learn Res 2(13):2367–2407MathSciNet
Zurück zum Zitat Angin P, Neville J (2008) A shrinkage approach for modeling non-stationary relational autocorrelation. In: Proceedings of the 8th IEEE international conference on data mining, IEEE Computer Society, pp 707–712 Angin P, Neville J (2008) A shrinkage approach for modeling non-stationary relational autocorrelation. In: Proceedings of the 8th IEEE international conference on data mining, IEEE Computer Society, pp 707–712
Zurück zum Zitat Anselin L (1995) Local indicators of spatial association:lisa. Geogr Anal 27(2):93–115CrossRef Anselin L (1995) Local indicators of spatial association:lisa. Geogr Anal 27(2):93–115CrossRef
Zurück zum Zitat Appice A, Ceci M, Malerba D, Lanza A (2012) Learning and transferring geographically weighted regression trees across time. In: Proceedings of MSM/MUSE 2012, LNCS, vol 7472. Springer, Berlin, pp 97–117 Appice A, Ceci M, Malerba D, Lanza A (2012) Learning and transferring geographically weighted regression trees across time. In: Proceedings of MSM/MUSE 2012, LNCS, vol 7472. Springer, Berlin, pp 97–117
Zurück zum Zitat Appice A, Ciampi A, Malerba D, Guccione P (2013b) Using trend clusters for spatiotemporal interpolation of missing data in a sensor network. J Spatial Inf Sci 6(1):119–153 Appice A, Ciampi A, Malerba D, Guccione P (2013b) Using trend clusters for spatiotemporal interpolation of missing data in a sensor network. J Spatial Inf Sci 6(1):119–153
Zurück zum Zitat Appice A, Pravilovic S, Malerba D, Lanza A (2013c) Enhancing regression models with spatio-temporal indicator additions. In: Baldoni M, Baroglio C, Boella G, Micalizio R (eds) Proceedings of AI*IA 2013: Advances in Artificial Intelligence—XIIIth international conference of the Italian Association for Artificial Intelligence, Lecture Notes in Computer Science, vol 8249. Springer, Berlin, pp 433–444 Appice A, Pravilovic S, Malerba D, Lanza A (2013c) Enhancing regression models with spatio-temporal indicator additions. In: Baldoni M, Baroglio C, Boella G, Micalizio R (eds) Proceedings of AI*IA 2013: Advances in Artificial Intelligence—XIIIth international conference of the Italian Association for Artificial Intelligence, Lecture Notes in Computer Science, vol 8249. Springer, Berlin, pp 433–444
Zurück zum Zitat Blockeel H, De Raedt L, Ramon J (1998) Top–down induction of clustering trees. In: Proceedings of ICML. Morgan Kaufmann, pp 55–63 Blockeel H, De Raedt L, Ramon J (1998) Top–down induction of clustering trees. In: Proceedings of ICML. Morgan Kaufmann, pp 55–63
Zurück zum Zitat Boots B (2002) Local measures of spatial association. Ecoscience 9(2):168–176MathSciNet Boots B (2002) Local measures of spatial association. Ecoscience 9(2):168–176MathSciNet
Zurück zum Zitat Burrough P, McDonnell R (1998) Principles of geographical information systems. Oxford University Press, Oxford Burrough P, McDonnell R (1998) Principles of geographical information systems. Oxford University Press, Oxford
Zurück zum Zitat Chen Z, Yang S, Li L, Xie Z (2010) A clustering approximation mechanism based on data spatial correlation in wireless sensor networks. In: Proceedings of the 9th conference on wireless telecommunications symposium, WTS 2010. IEEE Press, pp 208–214 Chen Z, Yang S, Li L, Xie Z (2010) A clustering approximation mechanism based on data spatial correlation in wireless sensor networks. In: Proceedings of the 9th conference on wireless telecommunications symposium, WTS 2010. IEEE Press, pp 208–214
Zurück zum Zitat Chiky R, Hébrail G (2008) Summarizing distributed data streams for storage in data warehouses. In: Proceedings of the 10th international conference on data warehousing and knowledge discovery (DaWaK 2008), LNCS, vol 5182. Springer, Berlin, pp 65–74 Chiky R, Hébrail G (2008) Summarizing distributed data streams for storage in data warehouses. In: Proceedings of the 10th international conference on data warehousing and knowledge discovery (DaWaK 2008), LNCS, vol 5182. Springer, Berlin, pp 65–74
Zurück zum Zitat Debeljak M, Trajanov A, Stojanova D, Leprince F, Džeroski S (2012) Using relational decision trees to model out-crossing rates in a multi-field setting. Ecol Model 245:75–83 Debeljak M, Trajanov A, Stojanova D, Leprince F, Džeroski S (2012) Using relational decision trees to model out-crossing rates in a multi-field setting. Ecol Model 245:75–83
Zurück zum Zitat Demšar D, Debeljak M, Lavigne C, Džeroski S (2005) Modelling pollen dispersal of genetically modified oilseed rape within the field. In: Abstracts of the 90th ESA annual meeting, The Ecological Society of America, p 152 Demšar D, Debeljak M, Lavigne C, Džeroski S (2005) Modelling pollen dispersal of genetically modified oilseed rape within the field. In: Abstracts of the 90th ESA annual meeting, The Ecological Society of America, p 152
Zurück zum Zitat Dray S, Jombart T (2011) Revisiting guerry’s data: introducing spatial constraints in multivariate analysis. Ann Appl Stat 5(4):2278–2299CrossRefMATHMathSciNet Dray S, Jombart T (2011) Revisiting guerry’s data: introducing spatial constraints in multivariate analysis. Ann Appl Stat 5(4):2278–2299CrossRefMATHMathSciNet
Zurück zum Zitat Gama J (2010) Knowledge discovery from data streams, 1st edn. Chapman & Hall/CRC, Boca RatonCrossRefMATH Gama J (2010) Knowledge discovery from data streams, 1st edn. Chapman & Hall/CRC, Boca RatonCrossRefMATH
Zurück zum Zitat Getis A (2008) A history of the concept of spatial autocorrelation: a geographer’s perspective. Geogr Anal 40(3):297–309CrossRef Getis A (2008) A history of the concept of spatial autocorrelation: a geographer’s perspective. Geogr Anal 40(3):297–309CrossRef
Zurück zum Zitat Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206CrossRef Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206CrossRef
Zurück zum Zitat Goodchild M (1986) Spatial autocorrelation. Geo Books Goodchild M (1986) Spatial autocorrelation. Geo Books
Zurück zum Zitat Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford
Zurück zum Zitat Gora G, Wojna A (2002) RIONA: a classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood. In: Proceedings of ECML 2002. Springer, Berlin, pp 111–123 Gora G, Wojna A (2002) RIONA: a classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood. In: Proceedings of ECML 2002. Springer, Berlin, pp 111–123
Zurück zum Zitat Holden ZA, Evans JS (2010) Using fuzzy c-means and local autocorrelation to cluster satellite-inferred burn severity classes. Int J Wildland Fire 19(7):853–860CrossRef Holden ZA, Evans JS (2010) Using fuzzy c-means and local autocorrelation to cluster satellite-inferred burn severity classes. Int J Wildland Fire 19(7):853–860CrossRef
Zurück zum Zitat Ikonomovska E, Gama J, Dzeroski S (2011) Incremental multi-target model trees for data streams. In: Chu WC, Wong WE, Palakal MJ, Hung CC (eds) Proceedings of the 2011 ACM symposium on applied computing (SAC). ACM, pp 988–993 Ikonomovska E, Gama J, Dzeroski S (2011) Incremental multi-target model trees for data streams. In: Chu WC, Wong WE, Palakal MJ, Hung CC (eds) Proceedings of the 2011 ACM symposium on applied computing (SAC). ACM, pp 988–993
Zurück zum Zitat Ingelrest F, Barrenetxea G, Schaefer G, Vetterli M, Couach O, Parlange M (2010) Sensorscope: application-specific sensor network for environmental monitoring. ACM Trans Sens Netw 17(1–17):32 Ingelrest F, Barrenetxea G, Schaefer G, Vetterli M, Couach O, Parlange M (2010) Sensorscope: application-specific sensor network for environmental monitoring. ACM Trans Sens Netw 17(1–17):32
Zurück zum Zitat Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, Oxford Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, Oxford
Zurück zum Zitat Karydas C, Gitas I, Koutsogiannaki E, Lydakis-Simantiris N, Silleos G (2009) Evaluation of spatial interpolation techniques for mapping agricultural topsoil properties in Crete. In: Proceedings of EARSeL 2009, vol 8, pp 26–39 Karydas C, Gitas I, Koutsogiannaki E, Lydakis-Simantiris N, Silleos G (2009) Evaluation of spatial interpolation techniques for mapping agricultural topsoil properties in Crete. In: Proceedings of EARSeL 2009, vol 8, pp 26–39
Zurück zum Zitat Kelley P, Barry R (1999) Sparse spatial autoregressions. Stat Probab Lett 33:291–297CrossRef Kelley P, Barry R (1999) Sparse spatial autoregressions. Stat Probab Lett 33:291–297CrossRef
Zurück zum Zitat Kim B, Tsiotras P (2009) Image segmentation on cell-center sampled quadtree and octree grids. pp 72, 480L–72, pp. 480L–9. doi:10.1117/12.810965 Kim B, Tsiotras P (2009) Image segmentation on cell-center sampled quadtree and octree grids. pp 72, 480L–72, pp. 480L–9. doi:10.​1117/​12.​810965
Zurück zum Zitat Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The ncep/ncar 50-year reanalysis. Bull Am Meteorol Soc 82(2):247–267CrossRef Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The ncep/ncar 50-year reanalysis. Bull Am Meteorol Soc 82(2):247–267CrossRef
Zurück zum Zitat Krige DG (1951) A statistical approach to some mine valuation and allied problems on the Witwatersrand. Master’s thesis Krige DG (1951) A statistical approach to some mine valuation and allied problems on the Witwatersrand. Master’s thesis
Zurück zum Zitat Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRef Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRef
Zurück zum Zitat LeSage JH, Pace K (2001) Spatial dependence in data mining. In: Data mining for scientific and engineering applications. Kluwer, Dordrecht, pp 439–460 LeSage JH, Pace K (2001) Spatial dependence in data mining. In: Data mining for scientific and engineering applications. Kluwer, Dordrecht, pp 439–460
Zurück zum Zitat Li J, Heap A (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23 Li J, Heap A (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23
Zurück zum Zitat Li L, Revesz P (2002) A comparison of spatio-temporal interpolation methods. GIScience, LNCS 2478. Springer, Berlin, pp 145–160 Li L, Revesz P (2002) A comparison of spatio-temporal interpolation methods. GIScience, LNCS 2478. Springer, Berlin, pp 145–160
Zurück zum Zitat Li L, Zhang X, Holt J, Tian J, Piltner R (2011) Spatiotemporal interpolation methods for air pollution exposure. In: Proceedings of SARA 2011, AAAI Li L, Zhang X, Holt J, Tian J, Piltner R (2011) Spatiotemporal interpolation methods for air pollution exposure. In: Proceedings of SARA 2011, AAAI
Zurück zum Zitat Lin G, Chen L (2004) A spatial interpolation method based on radial basis function networks incorporating a semivariogram model. J Hydrol 288:288–298CrossRef Lin G, Chen L (2004) A spatial interpolation method based on radial basis function networks incorporating a semivariogram model. J Hydrol 288:288–298CrossRef
Zurück zum Zitat Michalski RS, Stepp RE (1983) Learning from observation: conceptual clustering. In: Carbonell JG, Mitchell TM (eds) Michalski RS. Machine learning, an artificial intelligence approach, Tioga, pp 331–364 Michalski RS, Stepp RE (1983) Learning from observation: conceptual clustering. In: Carbonell JG, Mitchell TM (eds) Michalski RS. Machine learning, an artificial intelligence approach, Tioga, pp 331–364
Zurück zum Zitat Nassar S, Sander J (2007) Effective summarization of multi-dimensional data streams for historical stream mining. In: Proceedings of the 19th international conference on scientific and statistical database management, SSDBM 2007. IEEE Computer Society, p 30 Nassar S, Sander J (2007) Effective summarization of multi-dimensional data streams for historical stream mining. In: Proceedings of the 19th international conference on scientific and statistical database management, SSDBM 2007. IEEE Computer Society, p 30
Zurück zum Zitat Ohashi O, Torgo L (2012) Spatial interpolation using multiple regression. In: Zaki MJ, Siebes A, Yu JX, Goethals B, Webb GI, Wu X (eds) 12th IEEE international conference on data mining, ICDM 2012. IEEE Computer Society, pp 1044–1049 Ohashi O, Torgo L (2012) Spatial interpolation using multiple regression. In: Zaki MJ, Siebes A, Yu JX, Goethals B, Webb GI, Wu X (eds) 12th IEEE international conference on data mining, ICDM 2012. IEEE Computer Society, pp 1044–1049
Zurück zum Zitat Orkin M, Drogin R (1990) Vital statistics. McGraw Hill, New York Orkin M, Drogin R (1990) Vital statistics. McGraw Hill, New York
Zurück zum Zitat Pace P, Barry R (1997) Quick computation of regression with a spatially autoregressive dependent variable. Geogr Anal 29(3):232–247CrossRef Pace P, Barry R (1997) Quick computation of regression with a spatially autoregressive dependent variable. Geogr Anal 29(3):232–247CrossRef
Zurück zum Zitat Rodrigues PP, Gama J, Lopes LMB (2008) Clustering distributed sensor data streams. In: Proceedings of the European conference on machine learning and knowledge discovery in databases, LNCS 5212. Springer, Berlin, pp 282–297 Rodrigues PP, Gama J, Lopes LMB (2008) Clustering distributed sensor data streams. In: Proceedings of the European conference on machine learning and knowledge discovery in databases, LNCS 5212. Springer, Berlin, pp 282–297
Zurück zum Zitat Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87:108–119CrossRef Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87:108–119CrossRef
Zurück zum Zitat Scrucca L (2005) Clustering multivariate spatial data based on local measures of spatial autocorrelation. Tech. Rep. 20, Quaderni del Dipartimento di Economia, Finanza e Statistica, Università di Perugia Scrucca L (2005) Clustering multivariate spatial data based on local measures of spatial autocorrelation. Tech. Rep. 20, Quaderni del Dipartimento di Economia, Finanza e Statistica, Università di Perugia
Zurück zum Zitat Shepard D (1968a) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, ACM ’68. ACM, New York, NY, USA, pp 517–524. doi:10.1145/800186.810616 Shepard D (1968a) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, ACM ’68. ACM, New York, NY, USA, pp 517–524. doi:10.​1145/​800186.​810616
Zurück zum Zitat Shepard D (1968b) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM national conference, ACM, pp 517–524 Shepard D (1968b) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM national conference, ACM, pp 517–524
Zurück zum Zitat Song YC, Meng HD (2010) The application of cluster analysis in geophysical data interpretation. Comput Geosci 14(2):263–271CrossRefMATH Song YC, Meng HD (2010) The application of cluster analysis in geophysical data interpretation. Comput Geosci 14(2):263–271CrossRefMATH
Zurück zum Zitat Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: modeling and monitoring cluster transitions. In: Proceedings of the KDD 2006, ACM, pp 706–711 Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: modeling and monitoring cluster transitions. In: Proceedings of the KDD 2006, ACM, pp 706–711
Zurück zum Zitat Stein ML (1999) Interpolation of spatial data: some theory for kriging (springer series in statistics), 1st edn. Springer, Berlin Stein ML (1999) Interpolation of spatial data: some theory for kriging (springer series in statistics), 1st edn. Springer, Berlin
Zurück zum Zitat Stojanova D (2009) Estimating forest properties from remotely sensed data by using machine learning. Master’s thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia Stojanova D (2009) Estimating forest properties from remotely sensed data by using machine learning. Master’s thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
Zurück zum Zitat Stojanova D, Ceci M, Appice A, Dzeroski S (2012) Network regression with predictive clustering trees. Data Min Knowl Discov 25(2):378–413CrossRefMATHMathSciNet Stojanova D, Ceci M, Appice A, Dzeroski S (2012) Network regression with predictive clustering trees. Data Min Knowl Discov 25(2):378–413CrossRefMATHMathSciNet
Zurück zum Zitat Stojanova D, Ceci M, Appice A, Malerba D, Dzeroski S (2013) Dealing with spatial autocorrelation when learning predictive clustering trees. Ecol Inform 13:22–39 Stojanova D, Ceci M, Appice A, Malerba D, Dzeroski S (2013) Dealing with spatial autocorrelation when learning predictive clustering trees. Ecol Inform 13:22–39
Zurück zum Zitat Tobler W (1979) Cellular geography. Philos Geogr 20:379–386 Tobler W (1979) Cellular geography. Philos Geogr 20:379–386
Zurück zum Zitat Wang Y, Witten I (1997) Induction of model trees for predicting continuous classes. In: Proceedings of ECML 1997. Springer, Berlin, pp 128–137 Wang Y, Witten I (1997) Induction of model trees for predicting continuous classes. In: Proceedings of ECML 1997. Springer, Berlin, pp 128–137
Zurück zum Zitat Yong J, Xiao-ling Z, Jun S (2007) Unsupervised classification of polarimetric SAR Image by quad-tree segment and SVM. In: 1st Asian and Pacific conference on synthetic aperture radar, 2007 (APSAR 2007), pp 480–483. doi:10.1109/APSAR.2007.4418655 Yong J, Xiao-ling Z, Jun S (2007) Unsupervised classification of polarimetric SAR Image by quad-tree segment and SVM. In: 1st Asian and Pacific conference on synthetic aperture radar, 2007 (APSAR 2007), pp 480–483. doi:10.​1109/​APSAR.​2007.​4418655
Metadaten
Titel
Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering
verfasst von
Annalisa Appice
Donato Malerba
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Data Mining and Knowledge Discovery / Ausgabe 5-6/2014
Print ISSN: 1384-5810
Elektronische ISSN: 1573-756X
DOI
https://doi.org/10.1007/s10618-014-0372-z

Weitere Artikel der Ausgabe 5-6/2014

Data Mining and Knowledge Discovery 5-6/2014 Zur Ausgabe