Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2014 | Ausgabe 5-6/2014

Data Mining and Knowledge Discovery 5-6/2014

Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering

Zeitschrift:
Data Mining and Knowledge Discovery > Ausgabe 5-6/2014
Autoren:
Annalisa Appice, Donato Malerba
Wichtige Hinweise
Responsible editors: Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen and Filip Železný.

Abstract

Nowadays ubiquitous sensor stations are deployed worldwide, in order to measure several geophysical variables (e.g. temperature, humidity, light) for a growing number of ecological and industrial processes. Although these variables are, in general, measured over large zones and long (potentially unbounded) periods of time, stations cannot cover any space location. On the other hand, due to their huge volume, data produced cannot be entirely recorded for future analysis. In this scenario, summarization, i.e. the computation of aggregates of data, can be used to reduce the amount of produced data stored on the disk, while interpolation, i.e. the estimation of unknown data in each location of interest, can be used to supplement station records. We illustrate a novel data mining solution, named interpolative clustering, that has the merit of addressing both these tasks in time-evolving, multivariate geophysical applications. It yields a time-evolving clustering model, in order to summarize geophysical data and computes a weighted linear combination of cluster prototypes, in order to predict data. Clustering is done by accounting for the local presence of the spatial autocorrelation property in the geophysical data. Weights of the linear combination are defined, in order to reflect the inverse distance of the unseen data to each cluster geometry. The cluster geometry is represented through shape-dependent sampling of geographic coordinates of clustered stations. Experiments performed with several data collections investigate the trade-off between the summarization capability and predictive accuracy of the presented interpolative clustering algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5-6/2014

Data Mining and Knowledge Discovery 5-6/2014 Zur Ausgabe

Premium Partner

    Bildnachweise