Skip to main content
Erschienen in: Journal of Nanoparticle Research 6/2020

01.06.2020 | Research paper

Li2CoTi3O8 and its composite nanofibers as high performance and long cycle lithium ion electrode materials

verfasst von: Yuzhou Liu, Shuiping Huang, Chao Wang, Nan Gao, Xiaoyang Qiu, Xing Li

Erschienen in: Journal of Nanoparticle Research | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, Li2CoTi3O8 nanofibers and Li2CoTi3O8·CoTiO3·TiO2 (LCT) composite nanofibers as anode materials in lithium-ion batteries (LIBs) were successfully prepared by a traditional electrospinning technology, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and mappings. XRD confirms that the composite materials lattice planes well correspond to the patterns of Li2CoTi3O8, CoTiO3, and TiO2, respectively. SEM and TEM exhibits the fabricated composites are one-dimensional nanofibers with the diameter of 250~300 nm and 150~200 nm after annealing, respectively. The electrochemical properties of the materials for LIBs are investigated to indicate that the (LCT) composite nanofibers hold high reversible capacity of 201.68 mAh g−1 after 120 cycles and high rate capability at different current densities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahn D, Xiao XC (2011) Extended lithium titanate cycling potential window with near zero capacity loss. Electrochem Commun 13:796–799CrossRef Ahn D, Xiao XC (2011) Extended lithium titanate cycling potential window with near zero capacity loss. Electrochem Commun 13:796–799CrossRef
Zurück zum Zitat Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRef Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRef
Zurück zum Zitat Cheng Z, Hu Y, Wu K, Xing Y, Pan P, Jiang L, Mao J, Ni C, Wang Z, Zhang M, Zhang Y, Gu X, Zhang X (2020) Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries. Electrochim Acta 337:135789CrossRef Cheng Z, Hu Y, Wu K, Xing Y, Pan P, Jiang L, Mao J, Ni C, Wang Z, Zhang M, Zhang Y, Gu X, Zhang X (2020) Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries. Electrochim Acta 337:135789CrossRef
Zurück zum Zitat Cusenza M, Bobba S, Ardente F, Cellura M, Persio F (2019) Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J Clean Prod 215:634–649CrossRef Cusenza M, Bobba S, Ardente F, Cellura M, Persio F (2019) Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J Clean Prod 215:634–649CrossRef
Zurück zum Zitat Goriparti S, Miele E, Angelis F, Fabrizio E, Zaccaria P, Capigliaa C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef Goriparti S, Miele E, Angelis F, Fabrizio E, Zaccaria P, Capigliaa C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef
Zurück zum Zitat Han Y, Huang GY, Xu SM (2019) Structural reorganization-based nanomaterials as anodes for lithium-ion batteries: design, preparation, and performance. Small 16:1902841 Han Y, Huang GY, Xu SM (2019) Structural reorganization-based nanomaterials as anodes for lithium-ion batteries: design, preparation, and performance. Small 16:1902841
Zurück zum Zitat He ZX, Jiang YQ, Zhu J, Li YH, Jiang Z, Zhou HZ, Meng W, Wang L, Dai L (2017) Boosting the performance of LiTi2(PO4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites. J Alloys Compd 731:32–38CrossRef He ZX, Jiang YQ, Zhu J, Li YH, Jiang Z, Zhou HZ, Meng W, Wang L, Dai L (2017) Boosting the performance of LiTi2(PO4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites. J Alloys Compd 731:32–38CrossRef
Zurück zum Zitat Hou L, Qin X, Gao XJ, Guo T, Li X, Li J (2018) Zr−doped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries. J Alloys Compd 774:38–45CrossRef Hou L, Qin X, Gao XJ, Guo T, Li X, Li J (2018) Zrdoped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries. J Alloys Compd 774:38–45CrossRef
Zurück zum Zitat Huang B, Pan Z, Su X, An L (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286CrossRef Huang B, Pan Z, Su X, An L (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286CrossRef
Zurück zum Zitat Huff L, Tavassol H, Esbenshade J, Xing WT, Chiang YM, Gewirth A (2016) Identification of Li-ion battery SEI compounds through 7Li and 13C solid-state MAS NMR spectroscopy and MALDI-TOF mass spectrometry. ACS Appl Mater Interfaces 8:371–380CrossRef Huff L, Tavassol H, Esbenshade J, Xing WT, Chiang YM, Gewirth A (2016) Identification of Li-ion battery SEI compounds through 7Li and 13C solid-state MAS NMR spectroscopy and MALDI-TOF mass spectrometry. ACS Appl Mater Interfaces 8:371–380CrossRef
Zurück zum Zitat Jeong J, Junge D, Shin E, Oh E (2014) Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J Alloys Compd 604:226–232CrossRef Jeong J, Junge D, Shin E, Oh E (2014) Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J Alloys Compd 604:226–232CrossRef
Zurück zum Zitat Jung JW, Lee C, Yu S, Kim I (2015) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 10:703–750 Jung JW, Lee C, Yu S, Kim I (2015) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 10:703–750
Zurück zum Zitat Kamali A, Fray D (2015) Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J Mater Sci 51:569–576CrossRef Kamali A, Fray D (2015) Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J Mater Sci 51:569–576CrossRef
Zurück zum Zitat Lao MM, Qian SS, Yu HX, Yan L, Li P, Lin XT, Long NB, Shui M, Shu J (2016) Enhanced electrochemical properties of Mg2+ doped Li2Na2Ti6O14 anode material for lithium-ion batteries. Electrochim Acta 2016(196):642–652CrossRef Lao MM, Qian SS, Yu HX, Yan L, Li P, Lin XT, Long NB, Shui M, Shu J (2016) Enhanced electrochemical properties of Mg2+ doped Li2Na2Ti6O14 anode material for lithium-ion batteries. Electrochim Acta 2016(196):642–652CrossRef
Zurück zum Zitat Leng MZ, Bi JQ, Wang WL, Liu R, Xia C (2019) Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries. Ionics 25:1105–1115CrossRef Leng MZ, Bi JQ, Wang WL, Liu R, Xia C (2019) Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries. Ionics 25:1105–1115CrossRef
Zurück zum Zitat Liu SY, Fan CY, Wang HC, Zhang JP, Wu XL (2017) Electrochemical in situ formation of a stable Ti-based skeleton for improved Li-storage properties: a case study of porous CoTiO3 nanofibers. Chem Eur J 23:8712–8718CrossRef Liu SY, Fan CY, Wang HC, Zhang JP, Wu XL (2017) Electrochemical in situ formation of a stable Ti-based skeleton for improved Li-storage properties: a case study of porous CoTiO3 nanofibers. Chem Eur J 23:8712–8718CrossRef
Zurück zum Zitat Liu H, Wu XN, Guo EY, Lu QF (2019a) Tailored synthesis of coral-like CoTiO3/Co3O4/TiO2 nanobelts with superior Lithium storage capability. Energy Technol 8:1900774 Liu H, Wu XN, Guo EY, Lu QF (2019a) Tailored synthesis of coral-like CoTiO3/Co3O4/TiO2 nanobelts with superior Lithium storage capability. Energy Technol 8:1900774
Zurück zum Zitat Liu HD, Zhu ZY, Huang J, He X, Chen Y, Zhang R, Lin RQ, Li YJ, Yu S, Xing X, Yan QZ, Li XG, Frost M, An K, Feng J, Kostecki R, Xin HL, Ong S, Liu P (2019b) Elucidating the limit of Li insertion into the spinel Li4Ti5O12. ACS Mater Lett 1:96–102CrossRef Liu HD, Zhu ZY, Huang J, He X, Chen Y, Zhang R, Lin RQ, Li YJ, Yu S, Xing X, Yan QZ, Li XG, Frost M, An K, Feng J, Kostecki R, Xin HL, Ong S, Liu P (2019b) Elucidating the limit of Li insertion into the spinel Li4Ti5O12. ACS Mater Lett 1:96–102CrossRef
Zurück zum Zitat Ouyang CY, Zhong ZY, Lei MS (2007) Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun 9:1107–1112CrossRef Ouyang CY, Zhong ZY, Lei MS (2007) Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun 9:1107–1112CrossRef
Zurück zum Zitat Railey P, Song Y, Liu TY (2017) Metal organic frameworks with immobilized nanoparticles: synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater Res Bull 96:385–394CrossRef Railey P, Song Y, Liu TY (2017) Metal organic frameworks with immobilized nanoparticles: synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater Res Bull 96:385–394CrossRef
Zurück zum Zitat Sandhya C, John P, Gouri C (2014) Lithium titanate as anode material for lithium-ion cells: a review. Ionics 20:601–620CrossRef Sandhya C, John P, Gouri C (2014) Lithium titanate as anode material for lithium-ion cells: a review. Ionics 20:601–620CrossRef
Zurück zum Zitat Serife E, Stojanovska E, Simon B, Kilic A (2015) A review of nanofibrous structures in lithium ion batteries. J Power Sources 300:199–215CrossRef Serife E, Stojanovska E, Simon B, Kilic A (2015) A review of nanofibrous structures in lithium ion batteries. J Power Sources 300:199–215CrossRef
Zurück zum Zitat Shi JM, Liu GZ, Weng W, Cai LT, Zhang Q, Wu JH, Xu XX, Yao XY (2020) Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl Mater Interfaces 12:14079–14086CrossRef Shi JM, Liu GZ, Weng W, Cai LT, Zhang Q, Wu JH, Xu XX, Yao XY (2020) Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl Mater Interfaces 12:14079–14086CrossRef
Zurück zum Zitat Simon G, Goswami T (2011) Improving anodes for lithium ion batteries. Metall Mater Trans A 42:231–238CrossRef Simon G, Goswami T (2011) Improving anodes for lithium ion batteries. Metall Mater Trans A 42:231–238CrossRef
Zurück zum Zitat Tian BB, Xiang HF, Zhang L, Wang HH (2012) Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0 V. J Solid State Electrochem 16:205–211CrossRef Tian BB, Xiang HF, Zhang L, Wang HH (2012) Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0 V. J Solid State Electrochem 16:205–211CrossRef
Zurück zum Zitat Tojo T, Kawashiri S, Tsuda T, Kadowaki M, Inada R, Sakuraib Y (2019) Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode. J Electroanal Chem 836:24–29CrossRef Tojo T, Kawashiri S, Tsuda T, Kadowaki M, Inada R, Sakuraib Y (2019) Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode. J Electroanal Chem 836:24–29CrossRef
Zurück zum Zitat Trong L, Thao T, Dinh N (2015) Characterization of the Li-ionic conductivity of La(2/3−x)Li3xTiO3 ceramics used for all-solid-state batteries. Solid State Ionics 278:228–232CrossRef Trong L, Thao T, Dinh N (2015) Characterization of the Li-ionic conductivity of La(2/3−x)Li3xTiO3 ceramics used for all-solid-state batteries. Solid State Ionics 278:228–232CrossRef
Zurück zum Zitat Wang L, Xiao QZ, Li ZH, Lei GT, Wu LJ, Zhang P, Mao J (2012) Synthesis of Li2CoTi3O8 fibers and their application to lithium-ion batteries. Electrochim Acta 77:77–82CrossRef Wang L, Xiao QZ, Li ZH, Lei GT, Wu LJ, Zhang P, Mao J (2012) Synthesis of Li2CoTi3O8 fibers and their application to lithium-ion batteries. Electrochim Acta 77:77–82CrossRef
Zurück zum Zitat Wang J, Zhao HL, Shen YN, Du ZH, Chen XM, Xia Q (2013) Structure, stoichiometry, and electrochemical performance of Li2CoTi3O8 as an anode material for lithium-ion batteries. Chempluschem 78:1530–1535CrossRef Wang J, Zhao HL, Shen YN, Du ZH, Chen XM, Xia Q (2013) Structure, stoichiometry, and electrochemical performance of Li2CoTi3O8 as an anode material for lithium-ion batteries. Chempluschem 78:1530–1535CrossRef
Zurück zum Zitat Wang J, Shen LF, Li HS, Ding B, Nie P, Dou H, Zhang XG (2014) Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. J Alloys Compd 587:171–176CrossRef Wang J, Shen LF, Li HS, Ding B, Nie P, Dou H, Zhang XG (2014) Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. J Alloys Compd 587:171–176CrossRef
Zurück zum Zitat Wang ZY, Xiong FY, Tao HZ, Yue YZ (2020) Revealing the role of the amorphous phase in Na0.74CoO2/C/N composite cathode. J Alloys Compd 815:152616CrossRef Wang ZY, Xiong FY, Tao HZ, Yue YZ (2020) Revealing the role of the amorphous phase in Na0.74CoO2/C/N composite cathode. J Alloys Compd 815:152616CrossRef
Zurück zum Zitat Xu JQ, Thomas H, Francis R, Lum K, Wang JW, Liang B (2007) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177:512–527CrossRef Xu JQ, Thomas H, Francis R, Lum K, Wang JW, Liang B (2007) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177:512–527CrossRef
Zurück zum Zitat Xu HH, Sun YM, Luo W, Chen CJ, Liu Y, Huang YH (2014) Highly porous Li4Ti5O 12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171CrossRef Xu HH, Sun YM, Luo W, Chen CJ, Liu Y, Huang YH (2014) Highly porous Li4Ti5O 12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171CrossRef
Zurück zum Zitat Xu M, Han L, Han YJ, Yu Y, Zhai JF, Dong SJ (2015) Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution. J Mater Chem A 3:21471–21477CrossRef Xu M, Han L, Han YJ, Yu Y, Zhai JF, Dong SJ (2015) Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution. J Mater Chem A 3:21471–21477CrossRef
Zurück zum Zitat Yi TF, Yang SY, Li XY, Yao JH, Zhu YR, Zhu RS (2014a) Sub-micrometric Li4−xNaxTi5O12 (0≤x≤0.2) spinel as anode material exhibiting high rate capability. J Power Sources 246:505–511CrossRef Yi TF, Yang SY, Li XY, Yao JH, Zhu YR, Zhu RS (2014a) Sub-micrometric Li4−xNaxTi5O12 (0≤x≤0.2) spinel as anode material exhibiting high rate capability. J Power Sources 246:505–511CrossRef
Zurück zum Zitat Yi TF, Yang SY, Zhu YR, Ye M, Xie Y, Zhu RS (2014b) Enhanced rate performance of Li4Ti5O12 anode material by ethanol-assisted hydrothermal synthesis for lithium-ion battery. Ceram Int 40:9853–9858CrossRef Yi TF, Yang SY, Zhu YR, Ye M, Xie Y, Zhu RS (2014b) Enhanced rate performance of Li4Ti5O12 anode material by ethanol-assisted hydrothermal synthesis for lithium-ion battery. Ceram Int 40:9853–9858CrossRef
Zurück zum Zitat Yuan T, Yu X, Cai R, Zhou YK, Shao ZP (2010) Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J Power Sources 195:4997–5004CrossRef Yuan T, Yu X, Cai R, Zhou YK, Shao ZP (2010) Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J Power Sources 195:4997–5004CrossRef
Zurück zum Zitat Zeng LC, Qiu L, Cheng HM (2019) Towards the practical use of flexible lithium ion batteries. Energy Storage Mater 23:434–438CrossRef Zeng LC, Qiu L, Cheng HM (2019) Towards the practical use of flexible lithium ion batteries. Energy Storage Mater 23:434–438CrossRef
Zurück zum Zitat Zhang QY, Lu HS, Zhong HX, Yan XD, Ouyang CY, Zhang LZ (2015) W6+ & Br− codoped Li4Ti5O12 anode with super rate performances for Li-ion batteries. J Mater Chem A 3:13706–13716CrossRef Zhang QY, Lu HS, Zhong HX, Yan XD, Ouyang CY, Zhang LZ (2015) W6+ & Br codoped Li4Ti5O12 anode with super rate performances for Li-ion batteries. J Mater Chem A 3:13706–13716CrossRef
Zurück zum Zitat Zhang PC, Yuan T, Pang YP, Peng CX, Yang JH, Ma ZF, Zheng SY (2019) Influence of current density on graphite anode failure in lithium-ion batteries. J Electrochem Soc 166:A5489–A5495CrossRef Zhang PC, Yuan T, Pang YP, Peng CX, Yang JH, Ma ZF, Zheng SY (2019) Influence of current density on graphite anode failure in lithium-ion batteries. J Electrochem Soc 166:A5489–A5495CrossRef
Zurück zum Zitat Zhao Z, Xu YL, Ji MD, Zhang H (2013) Synthesis and electrochemical performance of F− doped Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 109:645–650CrossRef Zhao Z, Xu YL, Ji MD, Zhang H (2013) Synthesis and electrochemical performance of F doped Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 109:645–650CrossRef
Metadaten
Titel
Li2CoTi3O8 and its composite nanofibers as high performance and long cycle lithium ion electrode materials
verfasst von
Yuzhou Liu
Shuiping Huang
Chao Wang
Nan Gao
Xiaoyang Qiu
Xing Li
Publikationsdatum
01.06.2020
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 6/2020
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-020-04908-5

Weitere Artikel der Ausgabe 6/2020

Journal of Nanoparticle Research 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.