Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2015

01.04.2015

Lie symmetries of generalized Burgers equations: application to boundary-value problems

verfasst von: O. O. Vaneeva, C. Sophocleous, P. G. L. Leach

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There exist several approaches exploiting Lie symmetries in the reduction of boundary-value problems for partial differential equations modelling real-world phenomena to those problems for ordinary differential equations. Using an example of generalized Burgers equations appearing in non-linear acoustics we show that the direct procedure of solving boundary-value problems using Lie symmetries first described by Bluman is more general and straightforward than the method suggested by Moran and Gaggioli [J Eng Math 3:151–162, 1969]. After performing group classification of a class of generalized Burgers equations with time-dependent viscosity we solve an associated boundary-value problem using the symmetries obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that if \(a=1/n\), the equivalence group \(\hat{G}^\sim _2\) was found previously in [36] (see also [37, 38]) in the course of studying form-preserving (admissible) transformations of the class of generalized Burgers equations, \(u_t+uu_x+f(t,x)u_{xx}=0.\)
 
Literatur
1.
Zurück zum Zitat Bluman GW, Anco SC (2002) Symmetry and integration methods for differential equations. Springer, New YorkMATH Bluman GW, Anco SC (2002) Symmetry and integration methods for differential equations. Springer, New YorkMATH
2.
Zurück zum Zitat Moran M, Gaggioli R (1968) Reduction of the number of variables in systems of partial differential equations, with auxiliary conditions. SIAM J Appl Math 16:202–215CrossRefMathSciNetMATH Moran M, Gaggioli R (1968) Reduction of the number of variables in systems of partial differential equations, with auxiliary conditions. SIAM J Appl Math 16:202–215CrossRefMathSciNetMATH
4.
Zurück zum Zitat Bluman GW, Cole JD (1969) The general similarity solution of the heat equation. J Math Mech 18:1025–1042MathSciNetMATH Bluman GW, Cole JD (1969) The general similarity solution of the heat equation. J Math Mech 18:1025–1042MathSciNetMATH
5.
Zurück zum Zitat Bluman GW (1974) Application of the general similarity solution of the heat equation to boundary-value problems. Quart Appl Math 31:403–415MathSciNetMATH Bluman GW (1974) Application of the general similarity solution of the heat equation to boundary-value problems. Quart Appl Math 31:403–415MathSciNetMATH
7.
Zurück zum Zitat Sophocleous C, O’Hara JG, Leach PGL (2011) Symmetry analysis of a model of stochastic volatility with time-dependent parameters. J Comput Appl Math 235:4158–4164CrossRefMathSciNetMATH Sophocleous C, O’Hara JG, Leach PGL (2011) Symmetry analysis of a model of stochastic volatility with time-dependent parameters. J Comput Appl Math 235:4158–4164CrossRefMathSciNetMATH
8.
Zurück zum Zitat Sophocleous C, O’Hara JG, Leach PGL (2011) Algebraic solution of the Stein–Stein model for stochastic volatility. Commun Nonlinear Sci Numer Simul 16:1752–1759CrossRefADSMathSciNetMATH Sophocleous C, O’Hara JG, Leach PGL (2011) Algebraic solution of the Stein–Stein model for stochastic volatility. Commun Nonlinear Sci Numer Simul 16:1752–1759CrossRefADSMathSciNetMATH
9.
Zurück zum Zitat O’Hara JG, Sophocleous C, Leach PGL (2013) Application of Lie point symmetries to the resolution of certain problems in financial mathematics with a terminal condition. J Eng Math 82:67–75CrossRefMathSciNet O’Hara JG, Sophocleous C, Leach PGL (2013) Application of Lie point symmetries to the resolution of certain problems in financial mathematics with a terminal condition. J Eng Math 82:67–75CrossRefMathSciNet
10.
Zurück zum Zitat Abd-el-Malek MB, Helal MM (2011) Group method solutions of the generalized forms of Burgers, Burgers-KdV and KdV equations with time-dependent variable coefficients. Acta Mech 221:281–296CrossRefMATH Abd-el-Malek MB, Helal MM (2011) Group method solutions of the generalized forms of Burgers, Burgers-KdV and KdV equations with time-dependent variable coefficients. Acta Mech 221:281–296CrossRefMATH
11.
Zurück zum Zitat Kovalenko SS (2011) Symmetry analysis and exact solutions of one class of (1+3)-dimensional boundary-value problems of the Stefan type. Ukr Math J 63:1534–1542CrossRefMathSciNet Kovalenko SS (2011) Symmetry analysis and exact solutions of one class of (1+3)-dimensional boundary-value problems of the Stefan type. Ukr Math J 63:1534–1542CrossRefMathSciNet
12.
Zurück zum Zitat Kovalenko SS (2012) Lie symmetries and exact solutions of certain boundary-value problems with free boundaries. PhD thesis, Institute of Mathematics of NAS of Ukraine, Kiev (in Ukrainian) Kovalenko SS (2012) Lie symmetries and exact solutions of certain boundary-value problems with free boundaries. PhD thesis, Institute of Mathematics of NAS of Ukraine, Kiev (in Ukrainian)
13.
Zurück zum Zitat Bihlo A, Popovych RO (2012) Invariant discretization schemes for the shallow-water equations. SIAM J Sci Comput 34(6):B810–B839CrossRefMathSciNetMATH Bihlo A, Popovych RO (2012) Invariant discretization schemes for the shallow-water equations. SIAM J Sci Comput 34(6):B810–B839CrossRefMathSciNetMATH
16.
Zurück zum Zitat Forsyth AR (1959) Theory of differential equations. Part 4. Partial differential equations, vol 5–6. Dover, New York Forsyth AR (1959) Theory of differential equations. Part 4. Partial differential equations, vol 5–6. Dover, New York
17.
Zurück zum Zitat Bateman H (1915) Some recent researches on the motion of fluids. Mon Weather Rev 43(4):163–170CrossRefADS Bateman H (1915) Some recent researches on the motion of fluids. Mon Weather Rev 43(4):163–170CrossRefADS
18.
19.
Zurück zum Zitat Hopf E (1950) The partial differential equation \(u_t + u u_x = \mu u_{xx}\). Commun Pure Appl Math 33:201–230CrossRefMathSciNet Hopf E (1950) The partial differential equation \(u_t + u u_x = \mu u_{xx}\). Commun Pure Appl Math 33:201–230CrossRefMathSciNet
20.
Zurück zum Zitat Cole JD (1951) On a quasilinear parabolic equation occurring in aerodynamics. Quart Appl Math 9:225–236MathSciNetMATH Cole JD (1951) On a quasilinear parabolic equation occurring in aerodynamics. Quart Appl Math 9:225–236MathSciNetMATH
21.
Zurück zum Zitat Calogero F (1991) Why are certain nonlinear PDEs both widely applicable and integrable? In: What is integrability?. Springer Ser Nonlinear Dynam, Springer, Berlin, pp 1–62 Calogero F (1991) Why are certain nonlinear PDEs both widely applicable and integrable? In: What is integrability?. Springer Ser Nonlinear Dynam, Springer, Berlin, pp 1–62
22.
Zurück zum Zitat Hammerton PW, Crighton DG (1989) Approximate solution methods for nonlinear acoustic propagation over long ranges. Proc R Soc Lond A 426:125–152 Hammerton PW, Crighton DG (1989) Approximate solution methods for nonlinear acoustic propagation over long ranges. Proc R Soc Lond A 426:125–152
23.
24.
Zurück zum Zitat Wafo Soh C (2004) Symmetry reductions and new exact invariant solutions of the generalized Burgers equation arising in nonlinear acoustics. Int J Eng Sci 42:1169–1191CrossRefMathSciNetMATH Wafo Soh C (2004) Symmetry reductions and new exact invariant solutions of the generalized Burgers equation arising in nonlinear acoustics. Int J Eng Sci 42:1169–1191CrossRefMathSciNetMATH
25.
26.
Zurück zum Zitat Sachdev PL (2000) Self-Similarity and beyond: exact solutions of nonlinear problems. Chapman & Hall/CRC, Boca RatonCrossRef Sachdev PL (2000) Self-Similarity and beyond: exact solutions of nonlinear problems. Chapman & Hall/CRC, Boca RatonCrossRef
28.
Zurück zum Zitat Ovsiannikov LV (1982) Group analysis of differential equations. Academic Press, New YorkMATH Ovsiannikov LV (1982) Group analysis of differential equations. Academic Press, New YorkMATH
29.
Zurück zum Zitat Gasizov R, Ibragimov NH (1998) Lie symmetry analysis of differential equations in finance. Nonlinear Dyn 17:387–407CrossRef Gasizov R, Ibragimov NH (1998) Lie symmetry analysis of differential equations in finance. Nonlinear Dyn 17:387–407CrossRef
30.
Zurück zum Zitat Popovych RO, Kunzinger M, Eshraghi H (2010) Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl Math 109:315–359CrossRefMathSciNetMATH Popovych RO, Kunzinger M, Eshraghi H (2010) Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl Math 109:315–359CrossRefMathSciNetMATH
31.
32.
Zurück zum Zitat Winternitz P, Gazeau JP (1992) Allowed transformations and symmetry classes of variable coefficient Korteweg-de Vries equations. Phys Lett A 167:246–250CrossRefADSMathSciNet Winternitz P, Gazeau JP (1992) Allowed transformations and symmetry classes of variable coefficient Korteweg-de Vries equations. Phys Lett A 167:246–250CrossRefADSMathSciNet
33.
Zurück zum Zitat Vaneeva OO, Popovych RO, Sophocleous C (2014) Equivalence transformations in the study of integrability. Phys Scr 89:038003CrossRefADS Vaneeva OO, Popovych RO, Sophocleous C (2014) Equivalence transformations in the study of integrability. Phys Scr 89:038003CrossRefADS
34.
Zurück zum Zitat Vaneeva OO, Popovych RO, Sophocleous C (2012) Extended group analysis of variable coefficient reaction-diffusion equations with exponential nonlinearities. J Math Anal Appl 396:225–242CrossRefMathSciNetMATH Vaneeva OO, Popovych RO, Sophocleous C (2012) Extended group analysis of variable coefficient reaction-diffusion equations with exponential nonlinearities. J Math Anal Appl 396:225–242CrossRefMathSciNetMATH
35.
36.
37.
38.
Zurück zum Zitat Pocheketa OA (2013) Normalized classes of generalized Burgers equations. Proc 6th workshop group analysis of differential equations and integrable systems, Protaras, Cyprus, 2012. University of Cyprus, Nicosia, pp 170–178 Pocheketa OA (2013) Normalized classes of generalized Burgers equations. Proc 6th workshop group analysis of differential equations and integrable systems, Protaras, Cyprus, 2012. University of Cyprus, Nicosia, pp 170–178
39.
Zurück zum Zitat Olver PJ (1986) Applications of Lie groups to differential equations. Springer, New York Olver PJ (1986) Applications of Lie groups to differential equations. Springer, New York
40.
Zurück zum Zitat Lie S (1881) Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung. Arch Math 6(3):328–368. (Translation: Lie S (1994) On integration of a class of linear partial differential equations by means of definite integrals. In: CRC Handbook of Lie group analysis of differential equations, vol 2. Boca Raton, pp 473–508) Lie S (1881) Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung. Arch Math 6(3):328–368. (Translation: Lie S (1994) On integration of a class of linear partial differential equations by means of definite integrals. In: CRC Handbook of Lie group analysis of differential equations, vol 2. Boca Raton, pp 473–508)
41.
Zurück zum Zitat Vaneeva OO, Papanicolaou NC, Christou MA, Sophocleous C (2014) Numerical solutions of boundary value problems for variable coefficient generalized KdV equations using Lie symmetries. Commun Nonlinear Sci Numer Simulat 19:3074–3085CrossRefADSMathSciNet Vaneeva OO, Papanicolaou NC, Christou MA, Sophocleous C (2014) Numerical solutions of boundary value problems for variable coefficient generalized KdV equations using Lie symmetries. Commun Nonlinear Sci Numer Simulat 19:3074–3085CrossRefADSMathSciNet
42.
Zurück zum Zitat Kuriksha O, Pošta S, Vaneeva O (2014) Group classification of variable coefficient generalized Kawahara equations. J Phys A 47:045201CrossRefADSMathSciNet Kuriksha O, Pošta S, Vaneeva O (2014) Group classification of variable coefficient generalized Kawahara equations. J Phys A 47:045201CrossRefADSMathSciNet
Metadaten
Titel
Lie symmetries of generalized Burgers equations: application to boundary-value problems
verfasst von
O. O. Vaneeva
C. Sophocleous
P. G. L. Leach
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2015
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-014-9741-2

Weitere Artikel der Ausgabe 1/2015

Journal of Engineering Mathematics 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.