Skip to main content

2022 | OriginalPaper | Buchkapitel

Life Cycle Assessment and Carbon Footprint Analysis of Recycled Aggregates in the Construction of Earth-Retaining Walls During Reconstruction

verfasst von : Jason Maximino C. Ongpeng, Clarence P. Ginga

Erschienen in: Advances of Footprint Family for Sustainable Energy and Industrial Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In a nation, reconstruction is needed to provide resiliency and maintain economic growth. To remedy the damage done on roads and highways after an event, the reconstruction of earth-retaining walls (ERWs) before road/highway rehabilitation is of great importance. This would provide land transportation routes from airports or emergency personnel services to save lives and transport supplies/materials to disaster-stricken areas. It is one of the most common structures in civil engineering designed to retain earth pressure on roads and highways. It is constructed using concrete, a widely used construction material with high material consumption and carbon footprint. Aside from these, construction and demolition wastes (CDW) arise from the damaged ERWs and any concrete materials contributing to adverse impacts on the environment. These alarming facts are some of the many reasons for evaluating construction materials, such as using life cycle assessment (LCA) on CDWs. This paper investigates the use of ERWs using concrete from cradle-to-gate with natural aggregates (NAs) and recycled aggregates (RAs) from CDW. It considers three ERW types, such as gravity wall, cantilever wall, and mechanically stabilized earth (MSE) wall. It was found that the construction of MSE walls, among other types of earth retaining structures, is found to be 50–70% of less impact than other types of ERWs in this study. The utilization of RA in the production of concrete is up to 15% less impactful than NA, even with the additional 10% increase in cement content to compensate for the strength loss from the use of RA to NA. In ideal condition, the transport distances of NA and RA should be around 15–20 km from extraction of raw materials and processing, to concrete pouring. A limit of 100 km transport distance for RA must also be considered so that the environmental benefits from the use of RA would not be outweighed. Further studies on the economic aspect and the sustainability of its supply chain during the reconstruction are recommended.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Asia-Pacific Economic Cooperation (2018) Casebook of infrastructure build back better from natural disasters. Apec Secretariat, Singapore Asia-Pacific Economic Cooperation (2018) Casebook of infrastructure build back better from natural disasters. Apec Secretariat, Singapore
6.
Zurück zum Zitat Benson C (1997) The economic impact of natural disasters in the Philippines. Overseas Development Institute Library Benson C (1997) The economic impact of natural disasters in the Philippines. Overseas Development Institute Library
7.
Zurück zum Zitat Build Back Better in Recovery, Rehabilitation and Reconstruction (2017) Consultative version. United Nations Office for Disaster Risk Reduction. 2017 UNISDR. 9-11 Rue de Varembe, CH1202, Geneva, Switzerland Build Back Better in Recovery, Rehabilitation and Reconstruction (2017) Consultative version. United Nations Office for Disaster Risk Reduction. 2017 UNISDR. 9-11 Rue de Varembe, CH1202, Geneva, Switzerland
9.
Zurück zum Zitat Department of Public Works and Highways (2013) DPWH standard specifications for highways, bridges, and airports Department of Public Works and Highways (2013) DPWH standard specifications for highways, bridges, and airports
13.
Zurück zum Zitat Fairbrother A, Hope B (2005) Terrestrial ecotoxicity. Encycl Ecotoxicity 138–142 Fairbrother A, Hope B (2005) Terrestrial ecotoxicity. Encycl Ecotoxicity 138–142
23.
Zurück zum Zitat Martinez-Arguelles G, Acosta MP, Dugarte M, Fuentes L (2019) Life Cycle assessment of natural and recycled concrete aggregate production for road pavements applications in the northern region of Colombia: case study. Transp Res Rec J Transp Res Board 2673:397–406. https://doi.org/10.1177/0361198119839955CrossRef Martinez-Arguelles G, Acosta MP, Dugarte M, Fuentes L (2019) Life Cycle assessment of natural and recycled concrete aggregate production for road pavements applications in the northern region of Colombia: case study. Transp Res Rec J Transp Res Board 2673:397–406. https://​doi.​org/​10.​1177/​0361198119839955​CrossRef
26.
Zurück zum Zitat Ongpeng J, Catindoy D (2019b). Life cycle assessment of prefabricated and conventional reconstruction after disaster. Pacific Association of Quantity Surveyors PAQS Congress 2019, August 22–27, 2019, Kuching, Malaysia Ongpeng J, Catindoy D (2019b). Life cycle assessment of prefabricated and conventional reconstruction after disaster. Pacific Association of Quantity Surveyors PAQS Congress 2019, August 22–27, 2019, Kuching, Malaysia
28.
Zurück zum Zitat Ongpeng J, Pilien V, Rosario del, et al (2018b) Structural column retrofitting of school building using ferrocement composites in Vigan, Ilocos Sur, Philippines. In: Life-cycle analysis and assessment in civil engineering: towards an integrated vision 2018. Ghent, Belgium, pp 2309–2313 Ongpeng J, Pilien V, Rosario del, et al (2018b) Structural column retrofitting of school building using ferrocement composites in Vigan, Ilocos Sur, Philippines. In: Life-cycle analysis and assessment in civil engineering: towards an integrated vision 2018. Ghent, Belgium, pp 2309–2313
Metadaten
Titel
Life Cycle Assessment and Carbon Footprint Analysis of Recycled Aggregates in the Construction of Earth-Retaining Walls During Reconstruction
verfasst von
Jason Maximino C. Ongpeng
Clarence P. Ginga
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-76441-8_2