Skip to main content

2021 | OriginalPaper | Buchkapitel

15. Life Cycle Assessment of Lignocellulosic Waste Biorefinery

verfasst von : V. Venkatramanan, Shachi Shah, Ram Prasad, Mrinalini Shah

Erschienen in: Bio-valorization of Waste

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The twenty-first century is witnessing fossil fuel depletion, increase in the atmospheric concentration of greenhouse gases, industrialization, urbanization and global climate change. There is a growing need to switch over to renewable energy resources and move towards circular bioeconomy. Sustainable bioeconomy has been promoted to replace fossil fuels and to produce bioenergy, chemicals and high value-added products. Biorefineries play a pivotal role in circular bioeconomy. Adoption of biorefineries is a win-win proposition both from the perspective of energy security and waste management. “Biorefining is defined as the sustainable synergetic processing of biomass into a spectrum of marketable food and feed ingredients, products (chemicals, materials) and energy (fuels, power, heat)”. Biorefinery system endeavours to maximize the production of useful products from the biomass. Biorefineries adopt technologies which aim to process the biomass into diverse building blocks. The building blocks are further processed to generate biochemicals and biofuels. The biorefineries are classified based on key features such as (a) feedstocks used in the biorefinery, (b) conversion processes, (c) platform or intermediary products and (d) targeted products. The feedstocks including its characteristics, availability and biodegradability is one of the pertinent factors deciding the sustainability of biorefinery system. The debate between food and fuel has led to the search for second-generation biorefineries, which thrives on non-food biomass. The second-generation biorefineries utilize feedstocks such as residual biomass, lignocellulosic biomass and waste streams. The alternative biomass resources have huge potential for energy generation and can minimize fossil fuel use. Lignocellulose is the most abundant source of unutilised biomass. The positive attributes of lignocellulose biomass are year-round availability of biomass, renewability, sustainability, and amenability to conversion. Nevertheless, lignocellulosic waste biomass requires pretreatment for augmenting the efficiency of the conversion process. Several pretreatment strategies and methods such as physical, chemical and biological methods are adopted to enable lignin deconstruction. The pretreated lignocellulosic biomass through thermochemical conversion (combustion, gasification, hydrothermal processing, liquefaction, pyrolysis) and biochemical conversion are converted into bioenergy, biofuels, speciality chemicals and value-added products. Nevertheless, it is important to assess the impacts of biorefinery on the environment from the perspective of feedstocks, product generation and economic returns. The sustainability of the biorefineries is assessed through the life cycle assessment methodology. Life cycle assessment of biorefineries gains currency on account of (a) technological advancement, (b) bioconversion of diverse feedstocks into value-added products, (c) evaluation of the environmental performance of the biorefineries and (d) validating the sustainable conversion processes. As per ISO 14040, LCA involves four important components, namely goal, scope and functional unit; inventory analysis; impact assessment and interpretation. It has been observed that LCA of lignocellulosic biorefineries is greatly influenced by the methodological attributes, namely the “functional unit”, “system boundaries”, “allocation methods”, LCA approach, etc. LCA studies on lignocellulosic biorefineries reveal that the accuracy and reliability of LCA study are influenced by factors, not limited to data inadequacy, certain assumptions in LCA study and site-specific or local conditions. Though there are challenges to LCA of lignocellulosic waste biorefinery, importance must be placed on the sustainable production of value-added products, efficient utilization of resources, biovalorization and energy efficiency of the biorefinery system. The future research can be directed towards (a) sustainable biorefineries; (b) waste valorization; (c) upscaling the production of value-added products; (d) optimisation of bioconversion processes; (e) sustainable design configuration of the biorefinery; (f) role of biorefineries in the circular economy and (g) contribution of biorefineries in climate change mitigation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbas A, Ansumali S (2010) Global potential of rice husk as a renewable feedstock for ethanol biofuel production. Bioenergy Res 3:328–334CrossRef Abbas A, Ansumali S (2010) Global potential of rice husk as a renewable feedstock for ethanol biofuel production. Bioenergy Res 3:328–334CrossRef
Zurück zum Zitat Allen SG, Schulman D, Lichwa J, Antal MJ, Laser M, Lynd LR (2001) A comparison between hot liquid water and steam fractionation of corn fiber. Ind Eng Chem Res 40:2934–2941CrossRef Allen SG, Schulman D, Lichwa J, Antal MJ, Laser M, Lynd LR (2001) A comparison between hot liquid water and steam fractionation of corn fiber. Ind Eng Chem Res 40:2934–2941CrossRef
Zurück zum Zitat Alves FF, Bose SK, Francis RC, Colodette JL, Iakovlev M, Heiningen AV (2010) Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohydr Polym 82:1097–1101CrossRef Alves FF, Bose SK, Francis RC, Colodette JL, Iakovlev M, Heiningen AV (2010) Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohydr Polym 82:1097–1101CrossRef
Zurück zum Zitat Aswathy US, Sukumaran RK, Devi GL, Rajasree KP, Singhania RR, Pandey A (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresour Technol 101:925–930CrossRef Aswathy US, Sukumaran RK, Devi GL, Rajasree KP, Singhania RR, Pandey A (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresour Technol 101:925–930CrossRef
Zurück zum Zitat Brylev AN, Adylov DK, Tukhtaeva GG, Dinova NAK, Abidova LD, Rakhimov DA (2001) Polysaccharides of rice straw. Chem Nat Compd 37:569–570CrossRef Brylev AN, Adylov DK, Tukhtaeva GG, Dinova NAK, Abidova LD, Rakhimov DA (2001) Polysaccharides of rice straw. Chem Nat Compd 37:569–570CrossRef
Zurück zum Zitat Cao N, Xia Y, Gong CS, Tsao GT (1997) Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of a fungal cellulase. Appl Biochem Biotechnol 63–65:129–139CrossRef Cao N, Xia Y, Gong CS, Tsao GT (1997) Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of a fungal cellulase. Appl Biochem Biotechnol 63–65:129–139CrossRef
Zurück zum Zitat Cara C, Ruiz E, Oliva JM, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876CrossRef Cara C, Ruiz E, Oliva JM, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876CrossRef
Zurück zum Zitat Garda-Aparicio MAP, Ballesteros I, Gonzalez A, Oliva JWM, Ballesteros M, Negro MAJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288CrossRef Garda-Aparicio MAP, Ballesteros I, Gonzalez A, Oliva JWM, Ballesteros M, Negro MAJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288CrossRef
Zurück zum Zitat Herrera A, Téllez-Luis SJ, Ramírez JA, Vázquez M (2003) Production of xylose from sorghum strow using hydrochloric acid. J Cereal Sci 37:267e74CrossRef Herrera A, Téllez-Luis SJ, Ramírez JA, Vázquez M (2003) Production of xylose from sorghum strow using hydrochloric acid. J Cereal Sci 37:267e74CrossRef
Zurück zum Zitat Howard RL, Abotsi E, Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602e19 Howard RL, Abotsi E, Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602e19
Zurück zum Zitat Jeon YJ, Xun Z, Rogers PL (2010) Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett Appl Microbiol 51:518–524CrossRef Jeon YJ, Xun Z, Rogers PL (2010) Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett Appl Microbiol 51:518–524CrossRef
Zurück zum Zitat Kadolph SJ, Langford AL (1998) Textiles, 8th edn. Prentice Hall, Upper Saddle River, NJ Kadolph SJ, Langford AL (1998) Textiles, 8th edn. Prentice Hall, Upper Saddle River, NJ
Zurück zum Zitat Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702CrossRef Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702CrossRef
Zurück zum Zitat Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications: a review. Environ Sci Biol Technol 1:105–114 Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications: a review. Environ Sci Biol Technol 1:105–114
Zurück zum Zitat McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–43CrossRef McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–43CrossRef
Zurück zum Zitat Menon V, Prakash G, Rao M (2010) Enzymatic hydrolysis and ethanol production using xyloglucanase and Debaromyces hansenii from tamarind kernel powder: galactoxyloglucan predominant hemicellulose. J Biotechnol 148:233–239CrossRef Menon V, Prakash G, Rao M (2010) Enzymatic hydrolysis and ethanol production using xyloglucanase and Debaromyces hansenii from tamarind kernel powder: galactoxyloglucan predominant hemicellulose. J Biotechnol 148:233–239CrossRef
Zurück zum Zitat Miron J, Yosef E, Ben-Ghedalia D (2001) Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. J Agric Food Chem 49:2322–2326CrossRef Miron J, Yosef E, Ben-Ghedalia D (2001) Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. J Agric Food Chem 49:2322–2326CrossRef
Zurück zum Zitat Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
Zurück zum Zitat Mosihuzzaman M, Theander O, Aman P (1982) Comparative study of carbohydrates in the two major species of jute (Corchorus capsularis and Corchorus olitorius). J Sci Food Agr 33:1207–1212CrossRef Mosihuzzaman M, Theander O, Aman P (1982) Comparative study of carbohydrates in the two major species of jute (Corchorus capsularis and Corchorus olitorius). J Sci Food Agr 33:1207–1212CrossRef
Zurück zum Zitat Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes)hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97:107–116CrossRef Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes)hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97:107–116CrossRef
Zurück zum Zitat Pereira H (1988) Variability in the chemical composition of plantation eucalyptus. Wood Fiber Sci 20:82–90 Pereira H (1988) Variability in the chemical composition of plantation eucalyptus. Wood Fiber Sci 20:82–90
Zurück zum Zitat Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen A- B. (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819CrossRef Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen A- B. (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819CrossRef
Zurück zum Zitat Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39CrossRef Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39CrossRef
Zurück zum Zitat Rowell MR (1992) Emerging technologies for material and chemicals from biomass. In: Proceedings of symposium. American Chemical Society, Washington, DC, pp 26–31 Rowell MR (1992) Emerging technologies for material and chemicals from biomass. In: Proceedings of symposium. American Chemical Society, Washington, DC, pp 26–31
Zurück zum Zitat Rubio M, Tortosa JF, Quesada J, Gomez D (1998) Fractionation of lignocellulosics: solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass Bioenergy 15:483–491CrossRef Rubio M, Tortosa JF, Quesada J, Gomez D (1998) Fractionation of lignocellulosics: solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass Bioenergy 15:483–491CrossRef
Zurück zum Zitat Schell DJ, Ruth MF, Tucker MP (1999) Modeling the enzymatic hydrolysis of dilute acid pretreated Douglas fir. Appl Biochem Biotechnol 77:67–81CrossRef Schell DJ, Ruth MF, Tucker MP (1999) Modeling the enzymatic hydrolysis of dilute acid pretreated Douglas fir. Appl Biochem Biotechnol 77:67–81CrossRef
Zurück zum Zitat Singh R, Varma AJ, Laxman RS, Rao M (2009) Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresour Technol 100:6679–6681CrossRef Singh R, Varma AJ, Laxman RS, Rao M (2009) Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresour Technol 100:6679–6681CrossRef
Zurück zum Zitat Sinner M, Puls J, Dietrichs H (1979) Carbohydrate composition of nut shells and some other agricultural residues. Starch 31:267–269CrossRef Sinner M, Puls J, Dietrichs H (1979) Carbohydrate composition of nut shells and some other agricultural residues. Starch 31:267–269CrossRef
Zurück zum Zitat Stewart D, Azzini A, Hall A, Morrison I (1997) Sisal fibres and their constituent noncellulosic polymers. Ind Crop Prod 6:17–26CrossRef Stewart D, Azzini A, Hall A, Morrison I (1997) Sisal fibres and their constituent noncellulosic polymers. Ind Crop Prod 6:17–26CrossRef
Zurück zum Zitat Torget R, Hsu TA (1994) Two temperature dilute-acid prehydrolysis of hardwood xylan using a percolation process. Appl Biochem Biotechnol 45:5–22CrossRef Torget R, Hsu TA (1994) Two temperature dilute-acid prehydrolysis of hardwood xylan using a percolation process. Appl Biochem Biotechnol 45:5–22CrossRef
Zurück zum Zitat Vázquez M, Oliva M, Téllez-Luis SJ, Ramírez JA (2007) Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Bioresour Technol 98:3053e60 Vázquez M, Oliva M, Téllez-Luis SJ, Ramírez JA (2007) Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Bioresour Technol 98:3053e60
Metadaten
Titel
Life Cycle Assessment of Lignocellulosic Waste Biorefinery
verfasst von
V. Venkatramanan
Shachi Shah
Ram Prasad
Mrinalini Shah
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9696-4_15