Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 1/2018

18.11.2017 | Original Paper

Life cycle energy and carbon footprint analysis of photovoltaic battery microgrid system in India

verfasst von: Jani Das, Ajit Paul Abraham, Prakash C. Ghosh, Rangan Banerjee

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electricity supply in India is from a centralized grid. Many parts of the country experience grid interruptions. Life cycle energy and environmental analysis has been done for a 27 kWp photovoltaic system which acts as grid backup for 3 h outage in an Indian urban residential scenario. This paper discusses energy requirements and carbon emission for a PV storage system for five different battery technologies in Indian context. This can be used as a metric for comparative analysis for new batteries, with an undeveloped market. The energy requirements for the components are quantified and are compared in terms of energy payback time (EPBT) and Net Energy Ratio (NER). All the calculations are done for Indian context. EPBT is found to be in the range of 2–4.5 years for all the systems, while NER is in the range of 6.6–2.52. NaS has the highest emission factor of 0.67 kgCO2/kWh and the least for NiCd (0.091 kgCO2/kWh). These factors can be used to select a PV battery option and to target selection of materials and systems based on the reported values.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abraham AP, Ghosh PC, Banerjee R (2016) A framework for incorporating load profiles for sizing and designing of microgrid, 21st century energy needs-materials, systems and applications (ICTFCEN), Kharagpur, pp 1–6 Abraham AP, Ghosh PC, Banerjee R (2016) A framework for incorporating load profiles for sizing and designing of microgrid, 21st century energy needs-materials, systems and applications (ICTFCEN), Kharagpur, pp 1–6
Zurück zum Zitat Akinyele DO (2017) Environmental performance evaluation of a grid-independent solar photovoltaic power generation (SPPG) plant. Energy 130:515–529CrossRef Akinyele DO (2017) Environmental performance evaluation of a grid-independent solar photovoltaic power generation (SPPG) plant. Energy 130:515–529CrossRef
Zurück zum Zitat Akinyele DO, Rayudu RK (2016) Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries. Energy 109:160–179CrossRef Akinyele DO, Rayudu RK (2016) Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries. Energy 109:160–179CrossRef
Zurück zum Zitat Alsema E (1996) Environmental aspects of solar cell modules. Summary Report Department of Science, Technology and Society, Utrecht University Alsema E (1996) Environmental aspects of solar cell modules. Summary Report Department of Science, Technology and Society, Utrecht University
Zurück zum Zitat Alsema E (1998) Energy requirements and CO2 mitigation potential of PV systems. In: Presented at the BNL/NREL workshop “PV and the environment 1998”, Keystone, CO, USA Alsema E (1998) Energy requirements and CO2 mitigation potential of PV systems. In: Presented at the BNL/NREL workshop “PV and the environment 1998”, Keystone, CO, USA
Zurück zum Zitat Alsema E (2000a) Energy payback time and CO2 emissions of PV systems. Prog Photovolt Res Appl 8(1):17–25CrossRef Alsema E (2000a) Energy payback time and CO2 emissions of PV systems. Prog Photovolt Res Appl 8(1):17–25CrossRef
Zurück zum Zitat Alsema E (2000b) Environmental life cycle assessment of solar home systems Tech. Rep. NWS-E-2000-15. Department of Science, Technology and Society Utrecht University, Utrecht, The Netherlands Alsema E (2000b) Environmental life cycle assessment of solar home systems Tech. Rep. NWS-E-2000-15. Department of Science, Technology and Society Utrecht University, Utrecht, The Netherlands
Zurück zum Zitat Alsema E, de Wild-Scholten M (2005) The real environmental impacts of crystalline silicon PV modules: An analysis based on up-to-date manufacturers data. In: Presented at the 20th European photovoltaic solar energy conference Alsema E, de Wild-Scholten M (2005) The real environmental impacts of crystalline silicon PV modules: An analysis based on up-to-date manufacturers data. In: Presented at the 20th European photovoltaic solar energy conference
Zurück zum Zitat Battke B, Schmidt TS, Grosspietsch D, Hoffmann VH (2013) A review and probabilistic model of life cycle costs of stationary batteries in multiple applications. Renew Sustain Energy Rev 25:240–250CrossRef Battke B, Schmidt TS, Grosspietsch D, Hoffmann VH (2013) A review and probabilistic model of life cycle costs of stationary batteries in multiple applications. Renew Sustain Energy Rev 25:240–250CrossRef
Zurück zum Zitat Baumann M, Peters JF, Weil M, Grunwald A (2017) CO2 footprint and life cycle costs of electrochemical energy storage for stationary grid applications. Energy Technol 5:1071CrossRef Baumann M, Peters JF, Weil M, Grunwald A (2017) CO2 footprint and life cycle costs of electrochemical energy storage for stationary grid applications. Energy Technol 5:1071CrossRef
Zurück zum Zitat Das J, Ghosh PC, Banerjee R(2016)Life cycle analysis of battery technologies for photovoltaic application in India. 21st century energy needs-materials, systems and applications (ICTFCEN), Kharagpur, India, pp 1–5 Das J, Ghosh PC, Banerjee R(2016)Life cycle analysis of battery technologies for photovoltaic application in India. 21st century energy needs-materials, systems and applications (ICTFCEN), Kharagpur, India, pp 1–5
Zurück zum Zitat De Wild-Scholten MJ, Alsema EA (2006) Environmental life cycle inventory of crystalline silicon photovoltaic module production. In: Proceedings of the 2006 Materials Research Society Symposium, Materials Research Society, Warren-dale, PA De Wild-Scholten MJ, Alsema EA (2006) Environmental life cycle inventory of crystalline silicon photovoltaic module production. In: Proceedings of the 2006 Materials Research Society Symposium, Materials Research Society, Warren-dale, PA
Zurück zum Zitat Deng Y, Li J, Li T, Gao X, Yuan C (2017) Life cycle assessment of lithium sulfur battery for electric vehicles. J Power Sources 343:284–295CrossRef Deng Y, Li J, Li T, Gao X, Yuan C (2017) Life cycle assessment of lithium sulfur battery for electric vehicles. J Power Sources 343:284–295CrossRef
Zurück zum Zitat Denholm P, Kulcinski GL (2004) Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Convers Manage 45:2153–2172CrossRef Denholm P, Kulcinski GL (2004) Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Convers Manage 45:2153–2172CrossRef
Zurück zum Zitat Ehnberg J, Liu Y, Grahn M (2014) Grid and storage-system perspectives on renewable power. ISBN:978-91-980974-0-5 Ehnberg J, Liu Y, Grahn M (2014) Grid and storage-system perspectives on renewable power. ISBN:978-91-980974-0-5
Zurück zum Zitat Gaines L, Singh M (1995) Energy and environmental impacts of electric vehicle battery production and recycling. SAE Paper 951865 Gaines L, Singh M (1995) Energy and environmental impacts of electric vehicle battery production and recycling. SAE Paper 951865
Zurück zum Zitat Gaines L, Sullivan JL, Burnham A, Belharouak I (2011) Life cycle analysis of lithium ion battery production and recycling. 90th Annual meeting of transportation research board, Washington, D.C. Gaines L, Sullivan JL, Burnham A, Belharouak I (2011) Life cycle analysis of lithium ion battery production and recycling. 90th Annual meeting of transportation research board, Washington, D.C.
Zurück zum Zitat Germani M, Landi D, Rossi M (2015) Efficiency and environmental analysis of a system for renewable electricity generation and electrochemical storage of residential buildings. Proc CIRP 29:839–844CrossRef Germani M, Landi D, Rossi M (2015) Efficiency and environmental analysis of a system for renewable electricity generation and electrochemical storage of residential buildings. Proc CIRP 29:839–844CrossRef
Zurück zum Zitat Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef
Zurück zum Zitat Hiremath M, Derendorf K, Vogt T (2015) Comparative life cycle assessment of battery storage systems for stationary applications. Environ Sci Technol 49(8):4825–4833CrossRef Hiremath M, Derendorf K, Vogt T (2015) Comparative life cycle assessment of battery storage systems for stationary applications. Environ Sci Technol 49(8):4825–4833CrossRef
Zurück zum Zitat Hitmann Associates (1980) Life cycle energy analysis of electric vehicle storage batteries, H-1008/001-80-964. submitted to the US Department of Energy, Contract Number DE-AC02-79ET25420.A000 Hitmann Associates (1980) Life cycle energy analysis of electric vehicle storage batteries, H-1008/001-80-964. submitted to the US Department of Energy, Contract Number DE-AC02-79ET25420.A000
Zurück zum Zitat IEEE (2007) IEEE Std 1562 IEEE guide for array and battery sizing in stand-alone photovoltaic (PV) systems IEEE (2007) IEEE Std 1562 IEEE guide for array and battery sizing in stand-alone photovoltaic (PV) systems
Zurück zum Zitat Ishihara K, Nishimura K, Uchiyama Y (1999) Life cycle analysis of electric vehicles with advanced battery in Japan. Proc Electric Veh Symp Beijing China 16:7–10 Ishihara K, Nishimura K, Uchiyama Y (1999) Life cycle analysis of electric vehicles with advanced battery in Japan. Proc Electric Veh Symp Beijing China 16:7–10
Zurück zum Zitat ISO (1997) ISO International Standard, ISO/FDIS 14040, Environmental management: life cycle assessment—principles and framework ISO (1997) ISO International Standard, ISO/FDIS 14040, Environmental management: life cycle assessment—principles and framework
Zurück zum Zitat ISO (1998) ISO International Standard, ISO 14041, Environmental management: life cycle assessment—goal and scope definition and inventory analysis ISO (1998) ISO International Standard, ISO 14041, Environmental management: life cycle assessment—goal and scope definition and inventory analysis
Zurück zum Zitat ISO (2000) ISO International Standard, ISO 14042, Environmental management: life cycle assessment—life cycle impact assessment ISO (2000) ISO International Standard, ISO 14042, Environmental management: life cycle assessment—life cycle impact assessment
Zurück zum Zitat Jacob AS, Das J, Abraham AP, Banerjee R, Ghosh PC (2017) Cost and energy analysis of PV battery grid backup system for a residential load in urban India. Energy Procedia 118:88–94CrossRef Jacob AS, Das J, Abraham AP, Banerjee R, Ghosh PC (2017) Cost and energy analysis of PV battery grid backup system for a residential load in urban India. Energy Procedia 118:88–94CrossRef
Zurück zum Zitat Jungbluth N (2005) Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database. Prog Photovolt Res Appl 13(5):429–446CrossRef Jungbluth N (2005) Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database. Prog Photovolt Res Appl 13(5):429–446CrossRef
Zurück zum Zitat Jungbluth N, Stucki M, Flury K, Frischknecht R, Büsser S (2012) Life cycle inventories of photovoltaics. ESU-services Ltd., Uster Jungbluth N, Stucki M, Flury K, Frischknecht R, Büsser S (2012) Life cycle inventories of photovoltaics. ESU-services Ltd., Uster
Zurück zum Zitat Kato K, Murata A, Sakuta K (1998) Energy pay back time and life-cycle CO2 emission of residential PV power system with silicon PV module. Prog Photovolt Res Appl 6(2):105–115CrossRef Kato K, Murata A, Sakuta K (1998) Energy pay back time and life-cycle CO2 emission of residential PV power system with silicon PV module. Prog Photovolt Res Appl 6(2):105–115CrossRef
Zurück zum Zitat Kertes A (1996) Life cycle assessment of three available battery technologies for electric vehicles in a Swedish perspective. Master Thesis, Royal Institute of Technology Stockholm, Sweden Kertes A (1996) Life cycle assessment of three available battery technologies for electric vehicles in a Swedish perspective. Master Thesis, Royal Institute of Technology Stockholm, Sweden
Zurück zum Zitat Knapp K, Jester T (2001) Empirical Investigation of the energy pay back time for photovoltaic modules. Sol Energy 71(3):165–172CrossRef Knapp K, Jester T (2001) Empirical Investigation of the energy pay back time for photovoltaic modules. Sol Energy 71(3):165–172CrossRef
Zurück zum Zitat Krauter S, Ruther R (2004) Considerations for the calculations of greenhouse gas reduction by photovoltaic solar energy. Renew Energy 29(3):345–355CrossRef Krauter S, Ruther R (2004) Considerations for the calculations of greenhouse gas reduction by photovoltaic solar energy. Renew Energy 29(3):345–355CrossRef
Zurück zum Zitat Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium ion and nickel metal hydride batteries for plug in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium ion and nickel metal hydride batteries for plug in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef
Zurück zum Zitat Matheys J, Autenboer W, Timmermans JM, Mierlo J, Bossche P, Maggetto G (2007) Influence of functional unit on the life cycle assessment of traction batteries. Int J Life Cycle Assess 12:191–196CrossRef Matheys J, Autenboer W, Timmermans JM, Mierlo J, Bossche P, Maggetto G (2007) Influence of functional unit on the life cycle assessment of traction batteries. Int J Life Cycle Assess 12:191–196CrossRef
Zurück zum Zitat McKenna E, McManus M, Cooper S, Thomson M (2013) Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems. Appl Energy 104:239–249CrossRef McKenna E, McManus M, Cooper S, Thomson M (2013) Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems. Appl Energy 104:239–249CrossRef
Zurück zum Zitat Nawaz I, Tiwari GN (2006) Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level. Energy Policy 34(17):3144–3152CrossRef Nawaz I, Tiwari GN (2006) Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level. Energy Policy 34(17):3144–3152CrossRef
Zurück zum Zitat Newnham RH, Baldsing WGA (1997) Performance of flooded- and gelled-electrolyte lead/acid batteries under remote-area power-supply duty. J Power Sources 66(1):127–139 Newnham RH, Baldsing WGA (1997) Performance of flooded- and gelled-electrolyte lead/acid batteries under remote-area power-supply duty. J Power Sources 66(1):127–139
Zurück zum Zitat Notter DA, Gauch M, Widmer R, Wager P, Stamp A, Zah R, Althaus HJ (2010) Contribution of Li-Ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44:6550–6556CrossRef Notter DA, Gauch M, Widmer R, Wager P, Stamp A, Zah R, Althaus HJ (2010) Contribution of Li-Ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44:6550–6556CrossRef
Zurück zum Zitat Rydh CJ (1999) Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J Power Sources 80(1):21–29CrossRef Rydh CJ (1999) Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J Power Sources 80(1):21–29CrossRef
Zurück zum Zitat Rydh CJ, Sanden BA (2005a) Energy Analysis of batteries in photovoltaic systems-Part I: performance and energy requirements. Energy Convers Manag 46:1957–1979CrossRef Rydh CJ, Sanden BA (2005a) Energy Analysis of batteries in photovoltaic systems-Part I: performance and energy requirements. Energy Convers Manag 46:1957–1979CrossRef
Zurück zum Zitat Rydh CJ, Sanden BA (2005b) Energy analysis of batteries in photovoltaic systems. Part II: energy return factors and overall battery efficiencies. Energy Convers Manag 46:1957–1979CrossRef Rydh CJ, Sanden BA (2005b) Energy analysis of batteries in photovoltaic systems. Part II: energy return factors and overall battery efficiencies. Energy Convers Manag 46:1957–1979CrossRef
Zurück zum Zitat Spanos C, Turney DE, Fthenakis V (2015) Life-cycle analysis of flow-assisted nickel zinc, manganese dioxide, and valve-regulated lead-acid batteries designed for demand-charge reduction. Renew Sustain Energy Rev 43:478–494CrossRef Spanos C, Turney DE, Fthenakis V (2015) Life-cycle analysis of flow-assisted nickel zinc, manganese dioxide, and valve-regulated lead-acid batteries designed for demand-charge reduction. Renew Sustain Energy Rev 43:478–494CrossRef
Zurück zum Zitat Sullivan JL, Gaines L (2010) A review of battery life cycle analysis, State of knowledge and critical needs. Energy Systems Division Argonne National Laboratory Sullivan JL, Gaines L (2010) A review of battery life cycle analysis, State of knowledge and critical needs. Energy Systems Division Argonne National Laboratory
Zurück zum Zitat Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energy Convers Manage 58:34–148CrossRef Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energy Convers Manage 58:34–148CrossRef
Zurück zum Zitat Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT An assessment of sustainable battery technology. J Power Sources 162(2):913–919CrossRef Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT An assessment of sustainable battery technology. J Power Sources 162(2):913–919CrossRef
Zurück zum Zitat Yu Y, Wang X, Wang D, Huang K, Wang L, Bao L, Wu F (2012) Environmental characteristics comparison of Li-ion batteries and Ni–MH batteries under the uncertainty of cycle performance. J Hazard Mater 229:455–460CrossRef Yu Y, Wang X, Wang D, Huang K, Wang L, Bao L, Wu F (2012) Environmental characteristics comparison of Li-ion batteries and Ni–MH batteries under the uncertainty of cycle performance. J Hazard Mater 229:455–460CrossRef
Zurück zum Zitat Yue D, You F, Darling SB (2014) Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: life cycle energy and environmental comparative analysis. Sol Energy 105:669–678CrossRef Yue D, You F, Darling SB (2014) Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: life cycle energy and environmental comparative analysis. Sol Energy 105:669–678CrossRef
Metadaten
Titel
Life cycle energy and carbon footprint analysis of photovoltaic battery microgrid system in India
verfasst von
Jani Das
Ajit Paul Abraham
Prakash C. Ghosh
Rangan Banerjee
Publikationsdatum
18.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 1/2018
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-017-1456-4

Weitere Artikel der Ausgabe 1/2018

Clean Technologies and Environmental Policy 1/2018 Zur Ausgabe