Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

30.03.2020

Lifetime Estimation and Measurement for Wireless Ad Hoc Networks

verfasst von: Mousami Vanjale, Janardan S. Chitode, Shilpa P. Gaikwad

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mobile ad-hoc networks (MANET) is a popular choice for “wireless communication network” due to ease of deployment. Nodes in MANET are battery operated, movable, and compact. They can sense, manipulate and communicate data wirelessly. Limited battery power of the nodes is one of the major constraints of MANET. This paper proposes a network lifetime model that considers residual energy and actual discharge rate of the battery along with the energy consumption in different modes like transmit, receive, sleep, idle, active and processing while calculating the lifetime. A circuit implementation of node with Arduino Mega 2560, ZigBee transceiver, 2100 mAh NiMH rechargeable battery was done to compare lifetime with conventional dynamic source routing (DSR) and modified Least Max Dynamic Source Routing (LMDSR) algorithms. The DSR algorithm always selects the shortest path between source and destination nodes. But the LMDSR algorithm also considers the residual battery levels of the nodes to avoid overuse of the node(s) with low battery. This will prevent the early exhaustion of node(s) which may be the reason for reduced network lifetime. The result analysis shows that the implementation of LMDSR algorithm improves the network lifetime on an average by 31% and reduces the energy consumption by 21% with a slight decrease in throughput.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vanjale, M., Gaikwad, S. P., & Chitode, J. S. (2019). Performance evaluation of ZigBee/802.15.4 for implementation of wireless ad-hoc network. International Journal of Innovative Technology and Exploring Engineering.,8(9), 491–497.CrossRef Vanjale, M., Gaikwad, S. P., & Chitode, J. S. (2019). Performance evaluation of ZigBee/802.15.4 for implementation of wireless ad-hoc network. International Journal of Innovative Technology and Exploring Engineering.,8(9), 491–497.CrossRef
2.
Zurück zum Zitat Lee, J.-S., Su, Y.-W., & Shen, C.-C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In 33rd annual conference of the IEEE industrial electronics society (IECON), November 5–8, 2007. Lee, J.-S., Su, Y.-W., & Shen, C.-C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In 33rd annual conference of the IEEE industrial electronics society (IECON), November 5–8, 2007.
3.
Zurück zum Zitat Kiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. International Journal of Ad Hoc Networks.,5(3), 324–339.CrossRef Kiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. International Journal of Ad Hoc Networks.,5(3), 324–339.CrossRef
4.
Zurück zum Zitat Tonneau, A.-S., Mitton, N., & Vandaele, J. (2015). How to choose an experimentation platform for wireless sensor networks? A survey on static and mobile wireless sensor network experimentation facilities. International Journal of Ad Hoc Networks,30, 115–127.CrossRef Tonneau, A.-S., Mitton, N., & Vandaele, J. (2015). How to choose an experimentation platform for wireless sensor networks? A survey on static and mobile wireless sensor network experimentation facilities. International Journal of Ad Hoc Networks,30, 115–127.CrossRef
5.
Zurück zum Zitat Pham, C. (2014). Communication performances of IEEE 802.15.4 wireless sensor motes for data-intensive applications: A comparison of WaspMote, Arduino MEGA, TelosB, MicaZ and iMote2 for image surveillance. International Journal of Network and Computer Applications,46, 48–59.CrossRef Pham, C. (2014). Communication performances of IEEE 802.15.4 wireless sensor motes for data-intensive applications: A comparison of WaspMote, Arduino MEGA, TelosB, MicaZ and iMote2 for image surveillance. International Journal of Network and Computer Applications,46, 48–59.CrossRef
6.
Zurück zum Zitat Del Castillo, I., Tobajas, F., Esper-Chaín, R., & De Armas, V. (2016). Hardware platform for wide-area vehicular sensor networks with mobile nodes. International Journal of Vehicular Communications,3, 21–30.CrossRef Del Castillo, I., Tobajas, F., Esper-Chaín, R., & De Armas, V. (2016). Hardware platform for wide-area vehicular sensor networks with mobile nodes. International Journal of Vehicular Communications,3, 21–30.CrossRef
7.
Zurück zum Zitat Rukpakavong, W., Guan, L., & Phillips, I. (2014). Dynamic node lifetime estimation for wireless sensor networks. IEEE Sensors Journal,14(5), 1370–1379.CrossRef Rukpakavong, W., Guan, L., & Phillips, I. (2014). Dynamic node lifetime estimation for wireless sensor networks. IEEE Sensors Journal,14(5), 1370–1379.CrossRef
8.
Zurück zum Zitat Ferdoush, S., & Li, X. (2014). Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring application. In 9th international conference on future networks and communications (pp. 103–110). Ferdoush, S., & Li, X. (2014). Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring application. In 9th international conference on future networks and communications (pp. 103–110).
9.
Zurück zum Zitat Yu, C., Cui, Y., Zhang, L., & Yang, S. (2009). ZigBee wireless sensor network in environmental monitoring applications. In 5th international conference on wireless communications, networking and mobile computing, Beijing (pp. 1–5). Yu, C., Cui, Y., Zhang, L., & Yang, S. (2009). ZigBee wireless sensor network in environmental monitoring applications. In 5th international conference on wireless communications, networking and mobile computing, Beijing (pp. 1–5).
10.
Zurück zum Zitat Wan, D., Navarro, D., & Mieyeville, F. (2014). Performance evaluation of IEEE 802.15.4 sensor networks in industrial applications. International Journal of Communication Systems,28, 1657–1674. Wan, D., Navarro, D., & Mieyeville, F. (2014). Performance evaluation of IEEE 802.15.4 sensor networks in industrial applications. International Journal of Communication Systems,28, 1657–1674.
11.
Zurück zum Zitat Choudhury, S., Kuchhal, P., Singh, R., & Anita. (2015) ZigBee and Bluetooth network based sensory data acquisition system. In International conference on intelligent computing, communication and convergence (pp. 367–372). Choudhury, S., Kuchhal, P., Singh, R., & Anita. (2015) ZigBee and Bluetooth network based sensory data acquisition system. In International conference on intelligent computing, communication and convergence (pp. 367–372).
12.
Zurück zum Zitat Woon, W. T. H., & Wan, T.-C. (2008). Performance evaluation of IEEE 802.15.4 wireless multi-hop networks: Simulation and testbed approach. International Journal of Ad Hoc and Ubiquitous Computing,3(1), 57–66.CrossRef Woon, W. T. H., & Wan, T.-C. (2008). Performance evaluation of IEEE 802.15.4 wireless multi-hop networks: Simulation and testbed approach. International Journal of Ad Hoc and Ubiquitous Computing,3(1), 57–66.CrossRef
13.
Zurück zum Zitat Kia, G., & Hassanzadeh, A. (2019). A multi-threshold long life time protocol with consistent performance for wireless sensor networks. AEU: International Journal of Electronics and Communications,101, 114–127. Kia, G., & Hassanzadeh, A. (2019). A multi-threshold long life time protocol with consistent performance for wireless sensor networks. AEU: International Journal of Electronics and Communications,101, 114–127.
14.
Zurück zum Zitat Gumaida, B. F., & Luo, J. (2019). Novel localization algorithm for wireless sensor network based on intelligent water drops. Journal of Wireless Network Communication,25(5), 1–13. Gumaida, B. F., & Luo, J. (2019). Novel localization algorithm for wireless sensor network based on intelligent water drops. Journal of Wireless Network Communication,25(5), 1–13.
15.
Zurück zum Zitat Luo, J., Wu, D., & Pan, C. (2015). Optimal energy strategy for node selection and data relay in WSN-based IoT. Mobile Networks and Application,20, 169–180.CrossRef Luo, J., Wu, D., & Pan, C. (2015). Optimal energy strategy for node selection and data relay in WSN-based IoT. Mobile Networks and Application,20, 169–180.CrossRef
16.
Zurück zum Zitat Gumaida, B. F., & Luo, J. (2017). An efficient algorithm for wireless sensor network localization based on hierarchical structure poly-particle swarm optimization. Journal of Wireless Network Communication,97(1), 125–151. Gumaida, B. F., & Luo, J. (2017). An efficient algorithm for wireless sensor network localization based on hierarchical structure poly-particle swarm optimization. Journal of Wireless Network Communication,97(1), 125–151.
17.
Zurück zum Zitat Rukpakavong, W., Phillips, I., & Guan, L. (2012). Lifetime estimation of sensor device with AA NiMH batteries. In 2nd international conference on information communication and management, IPCSIT (Vol. 55, pp. 98–102). IACSIT Press, Singapore. Rukpakavong, W., Phillips, I., & Guan, L. (2012). Lifetime estimation of sensor device with AA NiMH batteries. In 2nd international conference on information communication and management, IPCSIT (Vol. 55, pp. 98–102). IACSIT Press, Singapore.
18.
Zurück zum Zitat Ahmad, A., Javaid, N., Imran, M., Guizani, M., & Alhamed, A. A. (2016). An advanced energy consumption model for terrestrial wireless sensor networks. In International wireless communications and mobile computing conference (IWCMC), Paphos (pp. 790–793). Ahmad, A., Javaid, N., Imran, M., Guizani, M., & Alhamed, A. A. (2016). An advanced energy consumption model for terrestrial wireless sensor networks. In International wireless communications and mobile computing conference (IWCMC), Paphos (pp. 790–793).
19.
Zurück zum Zitat Report on “Impact of discharge current of rechargeable NiMH batteries on charge output in accordance with Peukert’s law” by Kerim Doruk Karinca, May 2015. Report on “Impact of discharge current of rechargeable NiMH batteries on charge output in accordance with Peukert’s law” by Kerim Doruk Karinca, May 2015.
20.
Zurück zum Zitat Shin, H. M., Park, S.-H., Jung, J., Lee, S., & Lee, I. (2017). Maximization of total throughput and device lifetime with non-linear battery properties. IEEE Transactions on Wireless Communications,16(12), 7774–7784.CrossRef Shin, H. M., Park, S.-H., Jung, J., Lee, S., & Lee, I. (2017). Maximization of total throughput and device lifetime with non-linear battery properties. IEEE Transactions on Wireless Communications,16(12), 7774–7784.CrossRef
Metadaten
Titel
Lifetime Estimation and Measurement for Wireless Ad Hoc Networks
verfasst von
Mousami Vanjale
Janardan S. Chitode
Shilpa P. Gaikwad
Publikationsdatum
30.03.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07242-0

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe

Neuer Inhalt