Skip to main content
Erschienen in: Wireless Personal Communications 4/2022

21.05.2022

Lifetime Improvement Based on Event Occurrence Patterns for Wireless Sensor Networks Using Multi-Objective Optimization

verfasst von: Hossein Mohtashami, Ali Movaghar, Mohammad Teshnehlab

Erschienen in: Wireless Personal Communications | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wide range of wireless sensor network applications has made it an interesting subject for many studies. One area of research is the controlled node placement in which the location of nodes is not random but predetermined. Controlled node placement can be very effective when either the price of the sensor nodes is high or the sensor coverage is of a specific type and it is necessary to provide special characteristics such as coverage, lifetime, reliability, delay, efficiency or other performance aspects of a wireless sensor network by using the minimum number of nodes. Since node placement algorithms are NP-Hard problems, and characteristics of a network are often in conflict with each other, the use of multi-objective evolutionary optimization algorithms in controlled node placement can be helpful. Previous research on node placement has assumed a uniform pattern of events, but this study shows if the pattern of events in the environment under investigation is geographically dependent, the results may lose their effectiveness drastically. In this study, a controlled node placement algorithm is proposed that aims to increase network lifetime and improve sensor coverage and radio communication, assuming that the event pattern is not uniform and has a geographical dependency. The proposed placement algorithm can be used for the initial placement or, for repairing a segmented network over time. In this study, multi-objective evolutionary optimization algorithms based on decomposition (MOEA/D) have been used, and the performance results have been compared with other node placement methods through simulation under different conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., et al. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., et al. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
2.
Zurück zum Zitat Nittel, S. (2009). A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors, 9(7), 5664–5678.CrossRef Nittel, S. (2009). A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors, 9(7), 5664–5678.CrossRef
3.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
4.
Zurück zum Zitat Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655.CrossRef Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655.CrossRef
5.
Zurück zum Zitat Curry, R. M., & Smith, J. C. (2016). A survey of optimization algorithms for wireless sensor network lifetime maximization. Computers & Industrial Engineering, 101, 145–166.CrossRef Curry, R. M., & Smith, J. C. (2016). A survey of optimization algorithms for wireless sensor network lifetime maximization. Computers & Industrial Engineering, 101, 145–166.CrossRef
6.
Zurück zum Zitat Biagioni, E.S. and G. Sasaki. Wireless sensor placement for reliable and efficient data collection. in System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on. 2003. Biagioni, E.S. and G. Sasaki. Wireless sensor placement for reliable and efficient data collection. in System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on. 2003.
7.
Zurück zum Zitat Chang, C.-Y., & Chang, H.-R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.CrossRef Chang, C.-Y., & Chang, H.-R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.CrossRef
8.
Zurück zum Zitat Liang, W., et al. (2012). Aggregate node placement for maximizing network lifetime in sensor networks. Wireless Communications and Mobile Computing, 12(3), 219–235.CrossRef Liang, W., et al. (2012). Aggregate node placement for maximizing network lifetime in sensor networks. Wireless Communications and Mobile Computing, 12(3), 219–235.CrossRef
9.
Zurück zum Zitat Cheng, X., et al. (2008). Relay sensor placement in wireless sensor networks. Wireless Networks, 14(3), 347–355.CrossRef Cheng, X., et al. (2008). Relay sensor placement in wireless sensor networks. Wireless Networks, 14(3), 347–355.CrossRef
10.
Zurück zum Zitat Xiuzhen, C., et al. (2003). Strong minimum energy topology in wireless sensor networks: NP-completeness and heuristics. IEEE Transactions on Mobile Computing, 2(3), 248–256.CrossRef Xiuzhen, C., et al. (2003). Strong minimum energy topology in wireless sensor networks: NP-completeness and heuristics. IEEE Transactions on Mobile Computing, 2(3), 248–256.CrossRef
11.
Zurück zum Zitat Lee, S., Younis, M., & Lee, M. (2016). Optimized bi-connected federation of multiple sensor network segments. Ad Hoc Networks., 38, 1–8.CrossRef Lee, S., Younis, M., & Lee, M. (2016). Optimized bi-connected federation of multiple sensor network segments. Ad Hoc Networks., 38, 1–8.CrossRef
12.
Zurück zum Zitat Fei, Z., et al. (2017). A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms, and open problems. IEEE Communications Surveys & Tutorials, 19(1), 550–586.CrossRef Fei, Z., et al. (2017). A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms, and open problems. IEEE Communications Surveys & Tutorials, 19(1), 550–586.CrossRef
13.
Zurück zum Zitat Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.CrossRef Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.CrossRef
14.
Zurück zum Zitat Konstantinidis, A., et al. (2010). A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. Computer Networks, 54(6), 960–976.CrossRef Konstantinidis, A., et al. (2010). A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. Computer Networks, 54(6), 960–976.CrossRef
15.
Zurück zum Zitat Konstantinidis, A., & Yang, K. (2012). Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing, 12(7), 1847–1864.CrossRef Konstantinidis, A., & Yang, K. (2012). Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing, 12(7), 1847–1864.CrossRef
16.
Zurück zum Zitat Konstantinidis, A., & Yang, K. (2011). Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing, 11(6), 4117–4134.CrossRef Konstantinidis, A., & Yang, K. (2011). Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing, 11(6), 4117–4134.CrossRef
17.
Zurück zum Zitat Sengupta, S., et al. (2013). Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence, 26(1), 405–416.CrossRef Sengupta, S., et al. (2013). Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence, 26(1), 405–416.CrossRef
18.
Zurück zum Zitat Can, Z., & Demirbas, M. (2013). A survey on in-network querying and tracking services for wireless sensor networks. Ad Hoc Networks, 11(1), 596–610.CrossRef Can, Z., & Demirbas, M. (2013). A survey on in-network querying and tracking services for wireless sensor networks. Ad Hoc Networks, 11(1), 596–610.CrossRef
19.
Zurück zum Zitat Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2011). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 13(1), 68–96.CrossRef Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2011). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 13(1), 68–96.CrossRef
20.
Zurück zum Zitat Rafigh, M., & Abbaspour, M. (2012). K-coverage persevering routing technique based on event occurrence patterns for wireless sensor networks. International Journal of Distributed Sensor Networks, 8(5), 164641.CrossRef Rafigh, M., & Abbaspour, M. (2012). K-coverage persevering routing technique based on event occurrence patterns for wireless sensor networks. International Journal of Distributed Sensor Networks, 8(5), 164641.CrossRef
21.
Zurück zum Zitat Mohtashami, H., Movaghar, A., & Teshnehlab, M. (2017). Multi-objective node placement considering non-uniform event pattern. Wireless Personal Communications, 97(4), 6189–6220.CrossRef Mohtashami, H., Movaghar, A., & Teshnehlab, M. (2017). Multi-objective node placement considering non-uniform event pattern. Wireless Personal Communications, 97(4), 6189–6220.CrossRef
22.
Zurück zum Zitat Melodia, T., et al. (2007). Communication and coordination in wireless sensor and actor networks. IEEE Transactions on Mobile Computing, 6(10), 1116–1129.CrossRef Melodia, T., et al. (2007). Communication and coordination in wireless sensor and actor networks. IEEE Transactions on Mobile Computing, 6(10), 1116–1129.CrossRef
23.
Zurück zum Zitat Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. Evolutionary Computation, IEEE Transactions on, 13(2), 284–302.CrossRef Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. Evolutionary Computation, IEEE Transactions on, 13(2), 284–302.CrossRef
24.
Zurück zum Zitat Konstantinidis, A., & Yang, K. (2011). Multi-objective k-connected deployment and power assignment in WSNs using a problem-specific constrained evolutionary algorithm based on decomposition. Computer Communications, 34(1), 83–98.CrossRef Konstantinidis, A., & Yang, K. (2011). Multi-objective k-connected deployment and power assignment in WSNs using a problem-specific constrained evolutionary algorithm based on decomposition. Computer Communications, 34(1), 83–98.CrossRef
Metadaten
Titel
Lifetime Improvement Based on Event Occurrence Patterns for Wireless Sensor Networks Using Multi-Objective Optimization
verfasst von
Hossein Mohtashami
Ali Movaghar
Mohammad Teshnehlab
Publikationsdatum
21.05.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09712-z

Weitere Artikel der Ausgabe 4/2022

Wireless Personal Communications 4/2022 Zur Ausgabe

Neuer Inhalt