Skip to main content
Erschienen in: Wireless Networks 8/2019

04.05.2018

LiMCA: an optimal clustering algorithm for lifetime maximization of internet of things

verfasst von: Subir Halder, Amrita Ghosal, Mauro Conti

Erschienen in: Wireless Networks | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The idea of Internet of Things (IoT) is that many of the live objects (e.g., appliances) in the network are accessible, sensed, and interconnected. However, energy-constrained IoT nodes limit the performance of the IoT network. Hence, preserving energy in IoT network requires utmost attention. Unequal clustering is commonly considered as one of the efficient energy saving technique. Here, the traffic load is evenly distributed among the nodes using variable size clusters across the network. However, none of the existing solutions considered (1) realistic factors like fading model, routing protocol etc., or (2) optimization of cluster radius while devising clustering structure. The contribution of this paper is two-fold. First, we analyze the maximization of network lifetime by balancing the energy consumption among Cluster Heads (CHs). We found that cluster radius of each level has significant role in maximization of network lifetime. Second, to meet the requirement of maximization of network lifetime, this paper proposes a novel Lifetime Maximizing optimal Clustering Algorithm (LiMCA) for battery-powered IoT devices. Particularly, LiMCA includes a novel stochastic deployment scheme for Member Nodes (MNs) and CHs and a training protocol to train CHs and MNs about their coarse-grain location. Extensive simulation study shows that our algorithm improves the network lifetime by more than 30%, compared to other existing approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the internet of things: Definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122–140.CrossRef Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the internet of things: Definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122–140.CrossRef
2.
Zurück zum Zitat Fuqaha, A. A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.CrossRef Fuqaha, A. A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.CrossRef
3.
Zurück zum Zitat Xu, L., Collier, R., & O’Hare, G. M. P. (2017). A survey of clustering techniques in WSN and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet of Things Journal, 4(5), 1229–1249.CrossRef Xu, L., Collier, R., & O’Hare, G. M. P. (2017). A survey of clustering techniques in WSN and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet of Things Journal, 4(5), 1229–1249.CrossRef
4.
Zurück zum Zitat Anastasi, G., Conti, M., Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef Anastasi, G., Conti, M., Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef
5.
Zurück zum Zitat Li, Q. Q., Gochhayat, S. P., Conti, M., & Liu, F. A. (2017). EnergIoT: A solution to improve network lifetime of IoT devices. Pervasive and Mobile Computing, 42, 124–133.CrossRef Li, Q. Q., Gochhayat, S. P., Conti, M., & Liu, F. A. (2017). EnergIoT: A solution to improve network lifetime of IoT devices. Pervasive and Mobile Computing, 42, 124–133.CrossRef
6.
Zurück zum Zitat Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.CrossRef Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.CrossRef
7.
Zurück zum Zitat Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.CrossRef Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.CrossRef
8.
Zurück zum Zitat Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.CrossRef Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.CrossRef
9.
Zurück zum Zitat Lin, H., & Uster, H. (2014). Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem. IEEE/ACM Transactions on Networking, 22(3), 903–916.CrossRef Lin, H., & Uster, H. (2014). Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem. IEEE/ACM Transactions on Networking, 22(3), 903–916.CrossRef
10.
Zurück zum Zitat Moon, S. H., Park, S., & Han, S. J. (2017). Energy efficient data collection in sink-centric wireless sensor networks: A cluster-ring approach. Computer Communications, 101, 12–25.CrossRef Moon, S. H., Park, S., & Han, S. J. (2017). Energy efficient data collection in sink-centric wireless sensor networks: A cluster-ring approach. Computer Communications, 101, 12–25.CrossRef
11.
Zurück zum Zitat Wei, D., Jin, Y., Vural, S., Moessner, K., & Tafazolli, R. (2011). An energy-efficient clustering solution for wireless sensor networks. IEEE Transactions on Wireless Communications, 10(11), 3973–3983.CrossRef Wei, D., Jin, Y., Vural, S., Moessner, K., & Tafazolli, R. (2011). An energy-efficient clustering solution for wireless sensor networks. IEEE Transactions on Wireless Communications, 10(11), 3973–3983.CrossRef
12.
Zurück zum Zitat Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256–268.CrossRef Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256–268.CrossRef
13.
Zurück zum Zitat Shu, T., & Krunz, M. (2010). Coverage-time optimization for clustered wireless sensor networks: A power-balancing approach. IEEE/ACM Transactions on Networking, 18(1), 202–215.CrossRef Shu, T., & Krunz, M. (2010). Coverage-time optimization for clustered wireless sensor networks: A power-balancing approach. IEEE/ACM Transactions on Networking, 18(1), 202–215.CrossRef
14.
Zurück zum Zitat Sanchez, A. J. G., Sanchez, F. G., & Haro, J. G. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.CrossRef Sanchez, A. J. G., Sanchez, F. G., & Haro, J. G. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.CrossRef
15.
Zurück zum Zitat Conti, M. (2015). Secure wireless sensor networks: Threats and solutions. Berlin: Springer.CrossRef Conti, M. (2015). Secure wireless sensor networks: Threats and solutions. Berlin: Springer.CrossRef
16.
Zurück zum Zitat Halder, S., & Ghosal, A. (2015). Lifetime optimizing clustering structure using archimedes spiral based deployment in WSNs. In Proceedings of 14th IFIP/IEEE symposium on integrated network and service management (IM) (pp. 592–598). Halder, S., & Ghosal, A. (2015). Lifetime optimizing clustering structure using archimedes spiral based deployment in WSNs. In Proceedings of 14th IFIP/IEEE symposium on integrated network and service management (IM) (pp. 592–598).
17.
Zurück zum Zitat Baranidharan, B., & Santhi, B. (2016). DUCF: Distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach. Applied Soft Computing, 40, 495–506.CrossRef Baranidharan, B., & Santhi, B. (2016). DUCF: Distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach. Applied Soft Computing, 40, 495–506.CrossRef
18.
Zurück zum Zitat Halder, S., & Ghosal A. (2015). A predetermined deployment technique for lifetime optimization in clustered wsns. In Proceedings of international conference on algorithms and architectures for parallel processing (ICA3PP), LNCS 9531 (pp. 682–696). Halder, S., & Ghosal A. (2015). A predetermined deployment technique for lifetime optimization in clustered wsns. In Proceedings of international conference on algorithms and architectures for parallel processing (ICA3PP), LNCS 9531 (pp. 682–696).
19.
Zurück zum Zitat Darabkh, K. A., Ismail, S. S., Shurman, M. A., Jafar, I. F., Alkhader, E., & Mistarihi, M. F. A. (2012). Performance evaluation of selective and adaptive heads clustering algorithms over wireless sensor networks. Journal of Network and Computer Applications, 35(6), 2068–2080.CrossRef Darabkh, K. A., Ismail, S. S., Shurman, M. A., Jafar, I. F., Alkhader, E., & Mistarihi, M. F. A. (2012). Performance evaluation of selective and adaptive heads clustering algorithms over wireless sensor networks. Journal of Network and Computer Applications, 35(6), 2068–2080.CrossRef
20.
Zurück zum Zitat Xu, L., O’Hare, G. M. P., & Collier, R. (2017). A smart and balanced energy-efficient multihop clustering algorithm (smart-beem) for MIMO IoT systems in future networks. Sensors, 17(7), article no. 1574. Xu, L., O’Hare, G. M. P., & Collier, R. (2017). A smart and balanced energy-efficient multihop clustering algorithm (smart-beem) for MIMO IoT systems in future networks. Sensors, 17(7), article no. 1574.
21.
Zurück zum Zitat Lin, H., Wang, L., & Kong, R. (2015). Energy efficient clustering protocol for large-scale sensor networks. IEEE Sensors Journal, 15(12), 7150–7160.CrossRef Lin, H., Wang, L., & Kong, R. (2015). Energy efficient clustering protocol for large-scale sensor networks. IEEE Sensors Journal, 15(12), 7150–7160.CrossRef
22.
Zurück zum Zitat Chen, D. R. (2015). A link-and hop-constrained clustering for multi-hop wireless sensor networks. Computer Communications, 72, 78–92.CrossRef Chen, D. R. (2015). A link-and hop-constrained clustering for multi-hop wireless sensor networks. Computer Communications, 72, 78–92.CrossRef
23.
Zurück zum Zitat Ghosal, A., & Halder, S. (2017). Lifetime optimizing clustering structure using archimedes’ spiral based deployment in WSNs. IEEE Systems Journal, 11(2), 1039–1048.CrossRef Ghosal, A., & Halder, S. (2017). Lifetime optimizing clustering structure using archimedes’ spiral based deployment in WSNs. IEEE Systems Journal, 11(2), 1039–1048.CrossRef
24.
Zurück zum Zitat Kong, L., Xiang, Q., Liu, X., Liu, X. Y., Gao, X., Chen, G., et al. (2016). ICP: Instantaneous clustering protocol for wireless sensor networks. Computer Networks, 101, 144–157.CrossRef Kong, L., Xiang, Q., Liu, X., Liu, X. Y., Gao, X., Chen, G., et al. (2016). ICP: Instantaneous clustering protocol for wireless sensor networks. Computer Networks, 101, 144–157.CrossRef
25.
Zurück zum Zitat Ye, M., Li, C., Chen, G., & Wu, J. (2005). EECS: An energy efficient clustering scheme in wireless sensor networks. In Proceedings of 24th IEEE international performance, computing, and communications conference (IPCCC) (pp. 535–540). Ye, M., Li, C., Chen, G., & Wu, J. (2005). EECS: An energy efficient clustering scheme in wireless sensor networks. In Proceedings of 24th IEEE international performance, computing, and communications conference (IPCCC) (pp. 535–540).
26.
Zurück zum Zitat Ye, M., Li, C., Chen, G., & Wu, J. (2007). An energy efficient clustering scheme in wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 3(2–3), 99–119. Ye, M., Li, C., Chen, G., & Wu, J. (2007). An energy efficient clustering scheme in wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 3(2–3), 99–119.
27.
Zurück zum Zitat Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117–131.CrossRef Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117–131.CrossRef
28.
Zurück zum Zitat Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.CrossRef Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.CrossRef
29.
Zurück zum Zitat Chang, X., Tan, R., Xing, G., Yuan, Z., Lu, C., Chen, Y., et al. (2011). Sensor placement algorithms for fusion-based surveillance networks. IEEE Transaction on Parallel and Distributed Systems, 22(8), 1407–1414.CrossRef Chang, X., Tan, R., Xing, G., Yuan, Z., Lu, C., Chen, Y., et al. (2011). Sensor placement algorithms for fusion-based surveillance networks. IEEE Transaction on Parallel and Distributed Systems, 22(8), 1407–1414.CrossRef
30.
Zurück zum Zitat Bagci, H., Korpeoglu, I., & Yazıcı, A. (2015). A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 914–923.CrossRef Bagci, H., Korpeoglu, I., & Yazıcı, A. (2015). A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 914–923.CrossRef
31.
Zurück zum Zitat Zhang, H., & Shen, H. (2009). Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526–1539.CrossRef Zhang, H., & Shen, H. (2009). Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526–1539.CrossRef
32.
Zurück zum Zitat Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.MathSciNetCrossRef Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.MathSciNetCrossRef
33.
Zurück zum Zitat Zuniga, M., & Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links. In Proceedings 1st annual IEEE communications society conference on sensor and ad hoc communications and networks (SECON) (pp. 517–526). Zuniga, M., & Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links. In Proceedings 1st annual IEEE communications society conference on sensor and ad hoc communications and networks (SECON) (pp. 517–526).
34.
Zurück zum Zitat Li, B., Li, H., Wang, W., Yin, Q., & Liu, H. (2013). Performance analysis and optimization for energy-efficient cooperative transmission in random wireless sensor network. IEEE Transactions on Wireless Communications, 12(9), 4647–4657.CrossRef Li, B., Li, H., Wang, W., Yin, Q., & Liu, H. (2013). Performance analysis and optimization for energy-efficient cooperative transmission in random wireless sensor network. IEEE Transactions on Wireless Communications, 12(9), 4647–4657.CrossRef
35.
Zurück zum Zitat Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming (3rd ed., Vol. 116). New York: Springer.CrossRef Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming (3rd ed., Vol. 116). New York: Springer.CrossRef
36.
Zurück zum Zitat Barsi, F., Bertossi, A. A., Lavault, C., Navarra, A., Olariu, S., Pinotti, M. C., et al. (2011). Efficient location training protocols for heterogeneous sensor and actor networks. IEEE Transactions on Mobile Computing, 10(3), 377–391.CrossRef Barsi, F., Bertossi, A. A., Lavault, C., Navarra, A., Olariu, S., Pinotti, M. C., et al. (2011). Efficient location training protocols for heterogeneous sensor and actor networks. IEEE Transactions on Mobile Computing, 10(3), 377–391.CrossRef
38.
Zurück zum Zitat Li, X., Yan, S., Xu, C., Nayak, A., & Stojmenovic, I. (2011). Localized delay-bounded and energy-efficient data aggregation in wireless sensor and actor networks. Wireless Communications and Mobile Computing, 11(12), 1603–1617.CrossRef Li, X., Yan, S., Xu, C., Nayak, A., & Stojmenovic, I. (2011). Localized delay-bounded and energy-efficient data aggregation in wireless sensor and actor networks. Wireless Communications and Mobile Computing, 11(12), 1603–1617.CrossRef
40.
Zurück zum Zitat Halder, S., & Ghosal, A. (2016). A location-wise predetermined deployment for optimizing lifetime in visual sensor networks. IEEE Transactions on Circuits and Systems for Video Technology, 26(6), 1131–1145.CrossRef Halder, S., & Ghosal, A. (2016). A location-wise predetermined deployment for optimizing lifetime in visual sensor networks. IEEE Transactions on Circuits and Systems for Video Technology, 26(6), 1131–1145.CrossRef
41.
Zurück zum Zitat Ishak, R., Xu, Q., Olariu, S., & Salleh, S. (2007). Hybrid training with binary search protocol for wireless sensor networks. Mobile Information Systems, 3(3–4), 233–249.CrossRef Ishak, R., Xu, Q., Olariu, S., & Salleh, S. (2007). Hybrid training with binary search protocol for wireless sensor networks. Mobile Information Systems, 3(3–4), 233–249.CrossRef
Metadaten
Titel
LiMCA: an optimal clustering algorithm for lifetime maximization of internet of things
verfasst von
Subir Halder
Amrita Ghosal
Mauro Conti
Publikationsdatum
04.05.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1741-0

Weitere Artikel der Ausgabe 8/2019

Wireless Networks 8/2019 Zur Ausgabe

Neuer Inhalt