Zum Inhalt

2025 | Buch

Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems

verfasst von: Albert C. J. Luo

Verlag: Springer Nature Singapore

insite
SUCHEN

Über dieses Buch

Dieses Buch ist eine Monografie über Grenzzyklen und homokline Netzwerke in polynomischen Systemen. Die Untersuchung des dynamischen Verhaltens polynomialer dynamischer Systeme wurde durch Hilberts sechzehntes Problem im Jahr 1900 angeregt. Viele Wissenschaftler haben versucht, an Hilberts sechzehntem Problem zu arbeiten, aber bisher wurden keine wesentlichen Ergebnisse erzielt. In diesem Buch werden die Eigenschaften von Gleichgewichten in planaren polynomischen dynamischen Systemen untersucht. Die entsprechenden ersten integralen Mannigfaltigkeiten werden ermittelt. Die homoklinen Netzwerke von Sätteln und Zentren (oder Begrenzungszyklen) in kreuzungsunivariaten polynomischen Systemen werden diskutiert und die entsprechende Bifurkationstheorie entwickelt. Die entsprechenden ersten integralen Mannigfaltigkeiten sind polynomale Funktionen. Man erhält die maximale Anzahl von Zentren und Sätteln in homoklinen Netzwerken, und man erhält auch die maximale Anzahl von Senken, Quellen und Sätteln in homoklinen Netzwerken ohne Zentren. Solche Studien sollen die globale Dynamik planarer polynomialer dynamischer Systeme erreichen, was einem helfen kann, globale Verhaltensweisen nichtlinearer dynamischer Systeme in der Physik, der chemischen Reaktionsdynamik, der Ingenieursdynamik usw. zu studieren. Dieses Buch ist eine Referenz für Doktoranden und Forscher auf dem Gebiet dynamischer Systeme und Steuerung in Mathematik, Maschinenbau und Elektrotechnik.

Inhaltsverzeichnis

Frontmatter
Chapter 1. Introduction
Abstract
Consider a dynamical system with a differential equation as \(\dot{x}_{1} \equiv \frac{{dx_{1} }}{dt} = P(x_{1} ,x_{2} ), \, \dot{x}_{2} \equiv \frac{{dx_{2} }}{dt} = Q(x_{1} ,x_{2} )\) where \(P(x_{1} ,x_{2} )\) and \(Q(x_{1} ,x_{2} )\) are real polynomials of degree \(n\). The second part of Hilbert's 16th problem is to decide an upper bound for the number of limit cycles in polynomial vector fields of degree \(n\) and, similar to the first part, investigate their relative positions. The original problem can be found.
Albert C. J. Luo
Chapter 2. Homoclinic Networks Without Centers
Abstract
In this Chapter, the homoclinic networks of sources, sinks, and saddles in self-univariate polynomial systems are discussed, and the numbers of sources, sinks and saddles are determined through a theorem, and the first integral manifolds are developed. The corresponding proof of the theorem is completed and a few illustrations of networks for source, sinks and saddles are presented for a better understanding of the homoclinic networks. Such homoclinic networks are without any centers even if the networks are separated by the homoclinic orbits.
Albert C. J. Luo
Chapter 3. Bifurcations for Homoclinic Networks Without Centers
Abstract
In this chapter, the appearing and switching bifurcations are discussed for the homoclinic networks of non-singular and singular sources, sinks, saddles with singular saddle-sources, saddle-sinks, and double-saddles in self-univariate polynomial systems.
Albert C. J. Luo
Chapter 4. Homoclinic Networks with Centers
Abstract
In this chapter, the homoclinic networks of positive and negative saddles with clockwise and counter-clockwise limit cycles in crossing-univariate polynomial systems are studied secondly, and the numbers of saddles and centers are determined through a theorem and the first integral manifolds are determined through polynomial functions. The corresponding proof of the theorem is given, and a few illustrations of networks of saddles and centers are given to show the corresponding geometric structures. Such homoclinic networks of saddles and centers are without any sources and sinks.
Albert C. J. Luo
Chapter 5. Bifurcations for Homoclinic Networks with Centers
Abstract
In this chapter, the appearing and switching bifurcations are studied for homoclinic networks of singular and non-singular saddles and centers with singular parabola-saddles and double-inflection saddles in crossing-univariate polynomial systems, and the first integral manifolds of such homoclinic networks are determined through polynomial functions. The illustrations of singular equilibriums to networks of non-singular saddles and centers are given.
Albert C. J. Luo
Backmatter
Metadaten
Titel
Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems
verfasst von
Albert C. J. Luo
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
Electronic ISBN
978-981-9726-17-2
Print ISBN
978-981-9726-16-5
DOI
https://doi.org/10.1007/978-981-97-2617-2