Skip to main content
Erschienen in: Mechanics of Composite Materials 2/2023

25.04.2023

Limit Equilibrium of a Piecewise Homogeneous Plane with Small-Scale Interfacial Shear Cracks at a Corner Point in the Presence of a Loaded Internal Semi-Infinite Crack

verfasst von: V. M. Nazarenko, A. L. Kipnis

Erschienen in: Mechanics of Composite Materials | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A plane static symmetric problem of theory of elasticity for a piecewise homogeneous isotropic plane with an interface in the form of sides of an angle, containing small-scale interfacial shear cracks at a corner point and a loaded internal semi-infinite crack, was considered. The exact solution to this problem was constructed by the Wiener-Hopf method in combination with the apparatus of the Mellin integral transform. The stress intensity factor at the tips of interfacial cracks was determined and the nature of the change in the breaking load was studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64-84 (2015).CrossRef V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64-84 (2015).CrossRef
2.
Zurück zum Zitat V. L. Bogdanov, “Influence of initial stresses on fracture of composite materials containing interacting cracks,” J. Math. Sci., 165, No 3, 371-384 (2010).CrossRef V. L. Bogdanov, “Influence of initial stresses on fracture of composite materials containing interacting cracks,” J. Math. Sci., 165, No 3, 371-384 (2010).CrossRef
3.
Zurück zum Zitat A. N. Guz, “Establishing the Foundations of the Mechanics of Fracture of Materials Compressed Along Cracks (Review),” Int. Appl. Mech., 50, No. 1, 1-57 (2014).CrossRef A. N. Guz, “Establishing the Foundations of the Mechanics of Fracture of Materials Compressed Along Cracks (Review),” Int. Appl. Mech., 50, No. 1, 1-57 (2014).CrossRef
4.
Zurück zum Zitat G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw–Hill, New York (1979). G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw–Hill, New York (1979).
5.
Zurück zum Zitat M. K. Kassir and G. C. Sih, Mechanics of Fracture. Three Dimensional Crack Problems, Noordhoff, Leyden (1975). M. K. Kassir and G. C. Sih, Mechanics of Fracture. Three Dimensional Crack Problems, Noordhoff, Leyden (1975).
6.
Zurück zum Zitat M. L. Williams, “The stresses around a fault or cracks in dissimilar media,” Bulletin of the Seismological Society of America, 49, 199-204 (1959).CrossRef M. L. Williams, “The stresses around a fault or cracks in dissimilar media,” Bulletin of the Seismological Society of America, 49, 199-204 (1959).CrossRef
7.
Zurück zum Zitat J. R. Rice and G. C. Sih, “Plane problem of cracks in dissimilar media,” Trans. ASME. J. Appl. Mech., 32, 418-423 (1965).CrossRef J. R. Rice and G. C. Sih, “Plane problem of cracks in dissimilar media,” Trans. ASME. J. Appl. Mech., 32, 418-423 (1965).CrossRef
8.
Zurück zum Zitat E. L. Nahmejn, B. M. Nuller, and M. B. Ryvkin, “Deformation of a composite elastic plane weakened by a periodic system of randomly loaded slots [in Russian],” Appl. Math. and Mech., 45, No. 6, 1088-1094 (1981). E. L. Nahmejn, B. M. Nuller, and M. B. Ryvkin, “Deformation of a composite elastic plane weakened by a periodic system of randomly loaded slots [in Russian],” Appl. Math. and Mech., 45, No. 6, 1088-1094 (1981).
9.
Zurück zum Zitat M. P. Savruk, “Fracture mechanics and strength of materials,” Ref. Guide: In 4 Vols. Vol. 2. Stress Intensity Factors in Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1988). M. P. Savruk, “Fracture mechanics and strength of materials,” Ref. Guide: In 4 Vols. Vol. 2. Stress Intensity Factors in Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1988).
10.
Zurück zum Zitat V. V. Loboda and A. E. Sheveleva, “Determining prefracture zones at a crack tip between two elastic orthotropic bodies,” Int. Appl. Mech., 39, No. 5, 566-572 (2003).CrossRef V. V. Loboda and A. E. Sheveleva, “Determining prefracture zones at a crack tip between two elastic orthotropic bodies,” Int. Appl. Mech., 39, No. 5, 566-572 (2003).CrossRef
11.
Zurück zum Zitat M. Comninou, “The interface crack,” Trans. ASME. J. Appl. Mech., 44, No 4, 631-636 (1977).CrossRef M. Comninou, “The interface crack,” Trans. ASME. J. Appl. Mech., 44, No 4, 631-636 (1977).CrossRef
12.
Zurück zum Zitat J. Dundurs and M. Comninou, “Revision and perspective of the interface crack problem,” Mech. Compos. Mater., No. 3, 387-396 (1979). J. Dundurs and M. Comninou, “Revision and perspective of the interface crack problem,” Mech. Compos. Mater., No. 3, 387-396 (1979).
13.
Zurück zum Zitat I. V. Simonov, “Crack at the interface in a uniform stress field,” Mech. Compos. Mater. No. 6, 969-976 (1985). I. V. Simonov, “Crack at the interface in a uniform stress field,” Mech. Compos. Mater. No. 6, 969-976 (1985).
14.
Zurück zum Zitat V. I. Ostryk, “Friction contact of the edges of an interface crack under the conditions of tension and shear,” Mater. Sci., 39, No. 2, 214-224 (2003).CrossRef V. I. Ostryk, “Friction contact of the edges of an interface crack under the conditions of tension and shear,” Mater. Sci., 39, No. 2, 214-224 (2003).CrossRef
15.
Zurück zum Zitat A. L. Kipnis, “On an approach to solving the problems of interface cracks originated at the corner points of a piecewise homogeneous body,” Dop. NANU, No. 10, 51-55 (2014). A. L. Kipnis, “On an approach to solving the problems of interface cracks originated at the corner points of a piecewise homogeneous body,” Dop. NANU, No. 10, 51-55 (2014).
16.
Zurück zum Zitat G. P. Cherepanov “ Plastic break lines at the tip of a crack [in Russian],” Appl. Math. and Mech., 40, No. 4, 720-728(1976). G. P. Cherepanov “ Plastic break lines at the tip of a crack [in Russian],” Appl. Math. and Mech., 40, No. 4, 720-728(1976).
17.
Zurück zum Zitat V. M. Nazarenko and A. L. Kipnis “Influence of interface shear cracks located near the angular point of the interface in a bi-homogeneous body on the stress state formed in the vicinity of this point,” J. Math. Sci., 261, No 1, 151-161 (2022).CrossRef V. M. Nazarenko and A. L. Kipnis “Influence of interface shear cracks located near the angular point of the interface in a bi-homogeneous body on the stress state formed in the vicinity of this point,” J. Math. Sci., 261, No 1, 151-161 (2022).CrossRef
18.
Zurück zum Zitat Ja. S. Ufljand, Integral Transforms in Problems of Elasticity Theory [in Russian], Nauka, Leningrad (1967). Ja. S. Ufljand, Integral Transforms in Problems of Elasticity Theory [in Russian], Nauka, Leningrad (1967).
19.
Zurück zum Zitat F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977). F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977).
20.
Zurück zum Zitat B. Noble, Methods Based on the Wiener‐Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, New York (1958). B. Noble, Methods Based on the Wiener‐Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, New York (1958).
21.
Zurück zum Zitat V. M. Nazarenko and A. L. Kipnis “Semi-infinite crack in piece-homogeneous plane with non-smooth interface of media,” Structural Integrity, 5, 174-177 (2019).CrossRef V. M. Nazarenko and A. L. Kipnis “Semi-infinite crack in piece-homogeneous plane with non-smooth interface of media,” Structural Integrity, 5, 174-177 (2019).CrossRef
Metadaten
Titel
Limit Equilibrium of a Piecewise Homogeneous Plane with Small-Scale Interfacial Shear Cracks at a Corner Point in the Presence of a Loaded Internal Semi-Infinite Crack
verfasst von
V. M. Nazarenko
A. L. Kipnis
Publikationsdatum
25.04.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 2/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10104-y

Weitere Artikel der Ausgabe 2/2023

Mechanics of Composite Materials 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.