Skip to main content
Erschienen in: Journal of Materials Science 6/2018

22.11.2017 | Energy materials

LiMn0.7Fe0.3PO4 nanorods grown on graphene sheets synthesized in situ by modified microwave-assisted solvothermal method as high-performance cathode materials

verfasst von: Bin Wu, Wenliang Gao

Erschienen in: Journal of Materials Science | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanosized hybrid cathode materials, LiMn0.7Fe0.3PO4 with olivine structure anchoring on the graphene matrices, were facilely prepared by employing a modified microwave-assisted solvothermal method. Many measurements such as XRD, SEM, TEM, EDS, Raman spectra and XPS have been utilized to identify their physicochemical properties. Electron microscopy analyses revealed that the widely distributed LiMn0.7Fe0.3PO4 nanorods were selectively and homogeneously grown on graphene sheets with rod length of 100–200 nm and diameter of 30–50 nm. In particular, it was fully improved that the deliberate additions of conductive matrix, graphene oxide, have facilitated the specific growth of LiMn0.7Fe0.3PO4 and therefore improved their homogeneity and morphology to form a huge electric network. Electrochemical assessments indicated that the as-synthesized materials delivered an initial discharge capacity of 159.8 mAh g−1 at 0.1 C and even 81.6 mAh g−1 at 20 C, meanwhile maintained their excellent rate capability and cycling ability, about 91.7% capacity retention after 80 cycles at 1 C. Theoretically speaking, the excellent electrochemical performance maybe makes these nanosized LiMn0.7Fe0.3PO4 cathode materials a potential candidate for the practical implications in high-power devices and energy storage systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phosphor—olivines as positive—electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phosphor—olivines as positive—electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
2.
Zurück zum Zitat Subramanya HP, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRef Subramanya HP, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRef
3.
Zurück zum Zitat Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284CrossRef Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284CrossRef
4.
Zurück zum Zitat Song H-K, Lee KT, Kim MG, Nazar LF, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater 20:3818–3834CrossRef Song H-K, Lee KT, Kim MG, Nazar LF, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater 20:3818–3834CrossRef
5.
Zurück zum Zitat Chung S-Y, Bloking JT, Ching Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRef Chung S-Y, Bloking JT, Ching Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRef
6.
Zurück zum Zitat Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRef Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRef
7.
Zurück zum Zitat Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432CrossRef Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432CrossRef
8.
Zurück zum Zitat Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265CrossRef Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265CrossRef
9.
Zurück zum Zitat Zou QQ, Zhu GN, Xia YY (2012) Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode. J. Power Sources. 206:222–229CrossRef Zou QQ, Zhu GN, Xia YY (2012) Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode. J. Power Sources. 206:222–229CrossRef
10.
Zurück zum Zitat Sun Y-K, Oh S-M, Park H-K, Scrosati B (2011) Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv Mater 23:5050–5054CrossRef Sun Y-K, Oh S-M, Park H-K, Scrosati B (2011) Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv Mater 23:5050–5054CrossRef
11.
Zurück zum Zitat Oh S-M, Myung S-T, Park JB, Scrosati B, Amine K, Sun Y-K (2012) Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries. Angew Chem Int Ed 51:1853–1856CrossRef Oh S-M, Myung S-T, Park JB, Scrosati B, Amine K, Sun Y-K (2012) Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries. Angew Chem Int Ed 51:1853–1856CrossRef
12.
Zurück zum Zitat Wang H, Yang Y, Liang Y, Cui L-F, Casalongue HS, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1−x Fe x PO4 Nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:7364–7368CrossRef Wang H, Yang Y, Liang Y, Cui L-F, Casalongue HS, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1−x Fe x PO4 Nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:7364–7368CrossRef
13.
Zurück zum Zitat Jensen KMO, Christensen M, Gunnlaugsson HP, Lock N, Bojesen ED, Proffen T, Iversen BB (2013) Defects in hydrothermally synthesized LiFePO4 and LiFe1−x Mn x PO4 cathode materials. Chem Mater 25:2282–2290CrossRef Jensen KMO, Christensen M, Gunnlaugsson HP, Lock N, Bojesen ED, Proffen T, Iversen BB (2013) Defects in hydrothermally synthesized LiFePO4 and LiFe1−x Mn x PO4 cathode materials. Chem Mater 25:2282–2290CrossRef
14.
Zurück zum Zitat Ding B, Xiao P, Ji G, Ma Y, Lu L, Lee JY (2013) High-Performance lithium-ion cathode LiMn0.7Fe0.3PO4/C and the mechanism of performance enhancements through Fe substitution. ACS Appl Mater Interfaces 5:12120–12126CrossRef Ding B, Xiao P, Ji G, Ma Y, Lu L, Lee JY (2013) High-Performance lithium-ion cathode LiMn0.7Fe0.3PO4/C and the mechanism of performance enhancements through Fe substitution. ACS Appl Mater Interfaces 5:12120–12126CrossRef
15.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
16.
Zurück zum Zitat Wang H, Robinson JT, Diankov G, Dai H (2010) Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc 132:3270–3271CrossRef Wang H, Robinson JT, Diankov G, Dai H (2010) Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc 132:3270–3271CrossRef
17.
Zurück zum Zitat Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3:701–705CrossRef Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3:701–705CrossRef
18.
Zurück zum Zitat Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–702CrossRef Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–702CrossRef
19.
Zurück zum Zitat Zhang B, Wang X, Liu Z, Li H, Huang X (2010) Enhanced electrochemical performances of carbon coated mesoporous LiFe0.2Mn0.8PO4. J Electrochem Soc 157:A285–A288CrossRef Zhang B, Wang X, Liu Z, Li H, Huang X (2010) Enhanced electrochemical performances of carbon coated mesoporous LiFe0.2Mn0.8PO4. J Electrochem Soc 157:A285–A288CrossRef
20.
Zurück zum Zitat Tang KB, Qian YT, Zeng JH, Yang XG (2003) Solvothermal route to semiconductor nanowires. Adv Mater 15:448–450CrossRef Tang KB, Qian YT, Zeng JH, Yang XG (2003) Solvothermal route to semiconductor nanowires. Adv Mater 15:448–450CrossRef
21.
Zurück zum Zitat Zhu Y-J, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555CrossRef Zhu Y-J, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555CrossRef
22.
Zurück zum Zitat Nan CY, Lu J, Chen C, Peng Q, Li YD (2011) Solvothermal synthesis of lithium iron phosphate nanoplates. J Mater Chem 21:9994–9996CrossRef Nan CY, Lu J, Chen C, Peng Q, Li YD (2011) Solvothermal synthesis of lithium iron phosphate nanoplates. J Mater Chem 21:9994–9996CrossRef
23.
Zurück zum Zitat Ellis B, Kan KH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem 17:3248–3254CrossRef Ellis B, Kan KH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem 17:3248–3254CrossRef
24.
Zurück zum Zitat Wilcox JD, Doeff MM, Marcinek M, Kostecki R (2007) Factors influencing the quality of carbon coatings on LiFePO4. J Electrochem Soc 154:A389–A395CrossRef Wilcox JD, Doeff MM, Marcinek M, Kostecki R (2007) Factors influencing the quality of carbon coatings on LiFePO4. J Electrochem Soc 154:A389–A395CrossRef
25.
Zurück zum Zitat Yang M, Guo Y, Wang Q, Xie J (2014) Synthesis and properties of optimized LiFePO4/C by a CVD-assisted two-step coating method. J Nanopart Res 16:1–9 Yang M, Guo Y, Wang Q, Xie J (2014) Synthesis and properties of optimized LiFePO4/C by a CVD-assisted two-step coating method. J Nanopart Res 16:1–9
26.
Zurück zum Zitat Yan Y, Yin YX, Xin S, Guo YG, Wan LJ (2012) Ionothermal synthesis of sulfur-doped porous carbons hybridized withgraphene as superior anode materials for lithium-ion batteries. Chem Commun 48:10663–10665CrossRef Yan Y, Yin YX, Xin S, Guo YG, Wan LJ (2012) Ionothermal synthesis of sulfur-doped porous carbons hybridized withgraphene as superior anode materials for lithium-ion batteries. Chem Commun 48:10663–10665CrossRef
27.
Zurück zum Zitat Yun YS, Le VD, Kim H, Chang SJ, Baek SJ, Park S, Kim BH, Kim YH, Kang K, Jin HJ (2014) Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. J Power Sources 262:79–85CrossRef Yun YS, Le VD, Kim H, Chang SJ, Baek SJ, Park S, Kim BH, Kim YH, Kang K, Jin HJ (2014) Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. J Power Sources 262:79–85CrossRef
28.
Zurück zum Zitat Guo S-M, Liu J-R, Qiu S, Wang Y-R, Yan X-R, Wu N-N, Wang S-Y, Guo Z-H (2016) Enhancing electrochemical performances of TiO2 porous microspheres through hybridizing with FeTiO3 and nanocarbon. Electrochim Acta 190:556–565CrossRef Guo S-M, Liu J-R, Qiu S, Wang Y-R, Yan X-R, Wu N-N, Wang S-Y, Guo Z-H (2016) Enhancing electrochemical performances of TiO2 porous microspheres through hybridizing with FeTiO3 and nanocarbon. Electrochim Acta 190:556–565CrossRef
29.
Zurück zum Zitat Wang Y-R, He Q-L, Guo J, Wang J-M, Luo Z-P, Shen TD, Ding K-Q, Khasanov A, Wei S-Y, Guo Z-H (2015) Ultrafine FePd nanoalloys decorated multiwalled cabon nanotubes toward enhanced ethanol oxidation reaction. ACS Appl Mater Interfaces 7:23920–23931CrossRef Wang Y-R, He Q-L, Guo J, Wang J-M, Luo Z-P, Shen TD, Ding K-Q, Khasanov A, Wei S-Y, Guo Z-H (2015) Ultrafine FePd nanoalloys decorated multiwalled cabon nanotubes toward enhanced ethanol oxidation reaction. ACS Appl Mater Interfaces 7:23920–23931CrossRef
30.
Zurück zum Zitat Bhuvaneswari MS, Bramnik NN, Ensling D, Ehrenberg H, Jaegermann W (2008) Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries. J Power Sources 180:553–560CrossRef Bhuvaneswari MS, Bramnik NN, Ensling D, Ehrenberg H, Jaegermann W (2008) Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries. J Power Sources 180:553–560CrossRef
31.
Zurück zum Zitat Castro L, Dedryvere R, Elkhalifi M, Lippens P, Breger J, Tessier C, Gonbeau D (2010) The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS. J Phys Chem C 114:17995–18000CrossRef Castro L, Dedryvere R, Elkhalifi M, Lippens P, Breger J, Tessier C, Gonbeau D (2010) The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS. J Phys Chem C 114:17995–18000CrossRef
32.
Zurück zum Zitat Chang X, Wang Z, Li X, Zhang L, Guo H, Peng W (2005) Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater Res Bull 40:1513–1520CrossRef Chang X, Wang Z, Li X, Zhang L, Guo H, Peng W (2005) Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater Res Bull 40:1513–1520CrossRef
33.
Zurück zum Zitat Zaghib K, Mauger A, Gendron F, Massot M, Julien CM (2008) Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. Ionics 14:371–376CrossRef Zaghib K, Mauger A, Gendron F, Massot M, Julien CM (2008) Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. Ionics 14:371–376CrossRef
34.
Zurück zum Zitat Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) LiMn0.8Fe0.2PO4, an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 121:8711–8715CrossRef Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) LiMn0.8Fe0.2PO4, an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 121:8711–8715CrossRef
35.
Zurück zum Zitat Wang Y, Zhang D, Yu X, Cai R, Shao Z, Liao X, Ma Z (2010) Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4. J. Alloys. Compd. 492:675–680CrossRef Wang Y, Zhang D, Yu X, Cai R, Shao Z, Liao X, Ma Z (2010) Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4. J. Alloys. Compd. 492:675–680CrossRef
36.
Zurück zum Zitat Jang BZ, Liu CG, Neff D, Ming ZN, Wang C, Xiong W, Zhamu A (2011) Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. Nano Lett 11:3785–3791CrossRef Jang BZ, Liu CG, Neff D, Ming ZN, Wang C, Xiong W, Zhamu A (2011) Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. Nano Lett 11:3785–3791CrossRef
37.
Zurück zum Zitat Zhou X, Xie Y, Deng Y, Qin X, Chen G (2015) The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating. J Mater Chem A 3:996–1004CrossRef Zhou X, Xie Y, Deng Y, Qin X, Chen G (2015) The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating. J Mater Chem A 3:996–1004CrossRef
38.
Zurück zum Zitat Liu T, Xu JJ, Wu BB, Xia QB, Wu XD (2013) Porous LiMn0.7Fe0.3PO4/C prepared by a thermal decomposition method as high performance cathode materials for Li-ion batteries. RSC Adv 3:13337–13341CrossRef Liu T, Xu JJ, Wu BB, Xia QB, Wu XD (2013) Porous LiMn0.7Fe0.3PO4/C prepared by a thermal decomposition method as high performance cathode materials for Li-ion batteries. RSC Adv 3:13337–13341CrossRef
39.
Zurück zum Zitat Wang X, Cao XQ, Bourgeois L, Guan H, Chen SM, Zhong YT, Tang DM, Li HQ, Zhai TY, Li L, Bando Y, Golberg D (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Funct Mater 22:2682–2690CrossRef Wang X, Cao XQ, Bourgeois L, Guan H, Chen SM, Zhong YT, Tang DM, Li HQ, Zhai TY, Li L, Bando Y, Golberg D (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Funct Mater 22:2682–2690CrossRef
40.
Zurück zum Zitat Xu DW, Chu XD, He YB, Ding ZJ, Li BH, Han WJ, Du HD, Kang FY (2015) Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure. Electrochim Acta 152:398–407CrossRef Xu DW, Chu XD, He YB, Ding ZJ, Li BH, Han WJ, Du HD, Kang FY (2015) Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure. Electrochim Acta 152:398–407CrossRef
41.
Zurück zum Zitat Yang X, Mi Y, Zhang W, Wu B, Zhou H (2015) Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene-assisted calcination process. J Power Sources 275:823–830CrossRef Yang X, Mi Y, Zhang W, Wu B, Zhou H (2015) Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene-assisted calcination process. J Power Sources 275:823–830CrossRef
42.
Zurück zum Zitat Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon J-M, Masquelier C (2008) Room-temperature single-phase Li insertion/extraction in nanoscale Li x FePO4. Nat Mater 7:741–747CrossRef Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon J-M, Masquelier C (2008) Room-temperature single-phase Li insertion/extraction in nanoscale Li x FePO4. Nat Mater 7:741–747CrossRef
43.
Zurück zum Zitat Wu G, Zhou Y, Gao X, Shao Z (2013) Facile low-temperature polyol process for LiFePO4 nanoplate and carbon nanotube composite. Solid State Sci 2:15–20CrossRef Wu G, Zhou Y, Gao X, Shao Z (2013) Facile low-temperature polyol process for LiFePO4 nanoplate and carbon nanotube composite. Solid State Sci 2:15–20CrossRef
Metadaten
Titel
LiMn0.7Fe0.3PO4 nanorods grown on graphene sheets synthesized in situ by modified microwave-assisted solvothermal method as high-performance cathode materials
verfasst von
Bin Wu
Wenliang Gao
Publikationsdatum
22.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1835-6

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Science 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.