Skip to main content

2017 | OriginalPaper | Buchkapitel

7. Linear and Nonlinear Stability of Flows

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with some useful aspects of the linear and nonlinear instability of flows on a sphere. The loss of stability of a hydrodynamic flow is the first stage of its transition to a turbulent state. This phenomenon is also very important in meteorology. The movement of the atmosphere is extremely irregular. There are not only damped waves, but also unstable waves, the amplitude of which increases, leading to the complete destruction of a zonal circulation and the appearance of a cyclonic circulation. In its turn, the cyclonic circulation is with time destroyed and replaced by a zonal circulation.
It should be noted that despite a large number of studies, the necessary conditions obtained by Rayleigh and Fiortoft remain so far the simplest and most constructive for studying the linear stability of shear and zonal flows. In addition, the semicircle theorems of Howard and Thuburn and Haynes set limits on the growth rate of unstable modes and provide information on the time–space structure of unstable disturbances. Nevertheless, the effectiveness of the necessary conditions for instability can be quite scanty. For example, any sufficiently strong LP flow of degree n ≥ 3 satisfies them. In this connection, every new condition for the instability can be a useful addition to the classical ones.
Sections 7.1 and 7.2 contain classical results on the linear instability of parallel shear flows (Squire’s theorem, Rayleigh instability condition, Fjörtoft theorem, Howard’s semicircle theorem) and zonal flows (Rayleigh-Kuo instability condition, spherical analog of Fjörtoft’s theorem and semicircle theorems by Thuburn and Haynes). Arnold’s sufficient condition for nonlinear stability and the first and the second (direct) Liapunov methods for the study of nonlinear instability are briefly discussed in Sect. 7.3. Note that the first Liapunov method has already been used in Sects. 5.​5 and 6.​6 to prove the nonlinear instability of the zonal RH waves and dipole modons in the Liapunov sense. The Liapunov stability in the invariant sets of perturbations is also discussed here. The definition of nonlinear instability by Zubov in a metric space is defined. It should be used in the case when an invariant set of perturbations is not a linear space and is only a metric space.
Equation for kinetic energy of perturbations is considered again in Sect. 7.4. Two mechanisms of generation of perturbation energy, previously described in a number of articles using the Eliassen-Palma flux diagnostics, are given in Sects. 7.5 and 7.6. Unfortunately, this diagnostics cannot be applied to arbitrary steady flow on a sphere. As an alternative, we propose in Sect. 7.6 a method for studying the geometric structure of growing perturbations of any stationary flow on a sphere using the energy and/or enstrophy norms. The method is based on the solution of eigenvalue problem for the symmetric part of the operator linearized about the basic flow. Besides, the eigenfunctions corresponding to the positive eigenvalues give a basis system of unstable orthogonal perturbations, while the instant growth of the kinetic energy (or/and enstrophy) of each such perturbation is determined by the corresponding eigenvalue. Thus, the eigenfunction corresponding to the largest positive eigenvalue gives the geometric structure of the most unstable perturbation in the energy norm (or/and in the enstrophy norm). The geometric structure of a set of unstable perturbations is also discussed here. In order to compare this method with the Eliassen-Palm flux diagnostics we applied it to the numerical stability study of the climatic January barotropic flow. The results of this numerical experiment presented in Sect. 7.7 show the ability of the method to construct the orthogonal system of unstable perturbations and, in particular, correctly reproduce both mechanisms of instability established earlier with the help of the Eliassen-Palm flux diagnostics near zonal jets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Andrews, D.G.: A conservation law for small-amplitude quasi-geostrophic disturbances on a zonally asymmetric basic flow. J. Atmos. Sci. 40, 85–90 (1983)CrossRef Andrews, D.G.: A conservation law for small-amplitude quasi-geostrophic disturbances on a zonally asymmetric basic flow. J. Atmos. Sci. 40, 85–90 (1983)CrossRef
8.
Zurück zum Zitat Andrews, D.G.: On the stability of forced non-zonal flows. Q. J. R. Meteorol. Soc. 110, 657–662 (1984)CrossRef Andrews, D.G.: On the stability of forced non-zonal flows. Q. J. R. Meteorol. Soc. 110, 657–662 (1984)CrossRef
9.
Zurück zum Zitat Andrews, D.G.: An Introduction to Atmospheric Physics, 2nd edn. Cambridge University Press, Cambridge (2010)CrossRef Andrews, D.G.: An Introduction to Atmospheric Physics, 2nd edn. Cambridge University Press, Cambridge (2010)CrossRef
12.
Zurück zum Zitat Arnold, V.I.: Conditions for non-linear stability of stationary plane curvilinear flows of an ideal fluid. Sov. Math. Dokl. 6, 773–776 (1965) Arnold, V.I.: Conditions for non-linear stability of stationary plane curvilinear flows of an ideal fluid. Sov. Math. Dokl. 6, 773–776 (1965)
14.
Zurück zum Zitat Arnold, V.I.: Ordinary Differential Equations. Springer, Berlin (2006) Arnold, V.I.: Ordinary Differential Equations. Springer, Berlin (2006)
23.
Zurück zum Zitat Balmforth, N.J., Morrison, P.J.: Necessary and sufficient instability conditions for inviscid shear flow. Stud. Appl. Math. 102(3), 309–344 (1999)MathSciNetCrossRefMATH Balmforth, N.J., Morrison, P.J.: Necessary and sufficient instability conditions for inviscid shear flow. Stud. Appl. Math. 102(3), 309–344 (1999)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Bärmann, F., Gierling, J., Rebhan E.: Shear flow instabilities of the jet stream and Hopf-bifurcation to periodic solutions. Beitr. Phys. Atmos. 70(2), 117–130 (1997) Bärmann, F., Gierling, J., Rebhan E.: Shear flow instabilities of the jet stream and Hopf-bifurcation to periodic solutions. Beitr. Phys. Atmos. 70(2), 117–130 (1997)
26.
Zurück zum Zitat Belenkaya, L., Friedlander, S., Yudovich, V.: The unstable spectrum of oscillating shear flows. SIAM J. Appl. Math. 59(5), 1701–1715 (1999)MathSciNetCrossRefMATH Belenkaya, L., Friedlander, S., Yudovich, V.: The unstable spectrum of oscillating shear flows. SIAM J. Appl. Math. 59(5), 1701–1715 (1999)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Branstator, G.: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci. 40(7), 1689–1708 (1983)CrossRef Branstator, G.: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci. 40(7), 1689–1708 (1983)CrossRef
54.
Zurück zum Zitat Chen P.: The barotropic normal modes in certain shear flows and the travelling waves in the atmosphere. J. Atmos. Sci. 50, 2054–2064 (1993)CrossRef Chen P.: The barotropic normal modes in certain shear flows and the travelling waves in the atmosphere. J. Atmos. Sci. 50, 2054–2064 (1993)CrossRef
63.
Zurück zum Zitat Criminale, W.O., Jackson, T.L., Joslin, R.D.: Theory and Computation in Hydrodynamic Stability. Cambridge University Press, Cambridge (2003)CrossRefMATH Criminale, W.O., Jackson, T.L., Joslin, R.D.: Theory and Computation in Hydrodynamic Stability. Cambridge University Press, Cambridge (2003)CrossRefMATH
64.
Zurück zum Zitat Currie, I.G.: Fundamental Mechanics of Fluids, 4th edn. CRC Press (Taylor & Francis Group), New York (2013)MATH Currie, I.G.: Fundamental Mechanics of Fluids, 4th edn. CRC Press (Taylor & Francis Group), New York (2013)MATH
65.
Zurück zum Zitat Curry, J.A., Webster, P.J.: Thermodynamics of Atmosphere and Oceans. Academic Press, San Diego (1999) Curry, J.A., Webster, P.J.: Thermodynamics of Atmosphere and Oceans. Academic Press, San Diego (1999)
67.
Zurück zum Zitat Dash, S.K., Keshavamurty, R.N.: Stability of mean monsoon zonal flow. Betr. Phys. Atmosph. 55 (4), 299–310 (1982)MATH Dash, S.K., Keshavamurty, R.N.: Stability of mean monsoon zonal flow. Betr. Phys. Atmosph. 55 (4), 299–310 (1982)MATH
68.
Zurück zum Zitat Dash, S.K., Keshavamurty, R.N.: Stability of a stationary Rossby wave embedded in the monsoon zonal flow. Betr. Phys. Atmos. 55(4), 311–324 (1982)MATH Dash, S.K., Keshavamurty, R.N.: Stability of a stationary Rossby wave embedded in the monsoon zonal flow. Betr. Phys. Atmos. 55(4), 311–324 (1982)MATH
71.
Zurück zum Zitat Dikii, L.A.: Hydrodynamic Stability and Atmosphere Dynamics. Gidrometeoizdat, Leningrad (1976) (in Russian) Dikii, L.A.: Hydrodynamic Stability and Atmosphere Dynamics. Gidrometeoizdat, Leningrad (1976) (in Russian)
72.
Zurück zum Zitat Dikii, L.A., Kurganskiy, M.V.: Integral conservation law for perturbations of zonal flow, and its application to stability studies. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 7(9), 623–626 (1971) Dikii, L.A., Kurganskiy, M.V.: Integral conservation law for perturbations of zonal flow, and its application to stability studies. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 7(9), 623–626 (1971)
76.
Zurück zum Zitat Drazin, P.G.: Introduction to Hydrodynamic Stability. Cambridge University Press, Cambridge (2002)CrossRefMATH Drazin, P.G.: Introduction to Hydrodynamic Stability. Cambridge University Press, Cambridge (2002)CrossRefMATH
77.
Zurück zum Zitat Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)CrossRefMATH Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)CrossRefMATH
86.
Zurück zum Zitat Dymnikov, V.P., Skiba Yu.N.: Spectral criteria for stability of barotropic atmospheric flows. Izv. Atmos. Oceanic Phys. 23(12), 943–951 (1987)MATH Dymnikov, V.P., Skiba Yu.N.: Spectral criteria for stability of barotropic atmospheric flows. Izv. Atmos. Oceanic Phys. 23(12), 943–951 (1987)MATH
94.
Zurück zum Zitat Fjörtoft, R.: Application of integral theorems in deriving criteria of stability of laminar flow and for the baroclinic circular vortex. Geofys. Publ. Norske Videnskaps-Akad. Oslo 17, 1–52 (1950)MathSciNet Fjörtoft, R.: Application of integral theorems in deriving criteria of stability of laminar flow and for the baroclinic circular vortex. Geofys. Publ. Norske Videnskaps-Akad. Oslo 17, 1–52 (1950)MathSciNet
100.
Zurück zum Zitat Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)MathSciNetCrossRefMATH Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)MathSciNetCrossRefMATH
102.
Zurück zum Zitat Friedlander, S., Strauss, W., Vishik, M.M.: Robustness of instability for the two dimensional Euler equations. SIAM J. Math. Anal. 30, 1343–1355 (1999)MathSciNetCrossRefMATH Friedlander, S., Strauss, W., Vishik, M.M.: Robustness of instability for the two dimensional Euler equations. SIAM J. Math. Anal. 30, 1343–1355 (1999)MathSciNetCrossRefMATH
103.
Zurück zum Zitat Friedlander, S., Vishik, M., Yudovich, V.: Unstable eigenvalues associated with inviscid fluid flows. J. Math. Fluid Mech. 2, 365–380 (2000)MathSciNetCrossRefMATH Friedlander, S., Vishik, M., Yudovich, V.: Unstable eigenvalues associated with inviscid fluid flows. J. Math. Fluid Mech. 2, 365–380 (2000)MathSciNetCrossRefMATH
115.
Zurück zum Zitat Gill, A.E.: The stability of planetary waves on an infinite beta plane. Geophys. Fluid Dyn. 6, 29–47 (1974)CrossRef Gill, A.E.: The stability of planetary waves on an infinite beta plane. Geophys. Fluid Dyn. 6, 29–47 (1974)CrossRef
116.
Zurück zum Zitat Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, New York (1982) Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, New York (1982)
124.
Zurück zum Zitat Gubarev, Yu.G.: On stability of steady-state plane–parallel shearing flows in a homogeneous in density ideal incompressible fluid. Nonlinear Anal. Hybrid Syst. 1, 103–118 (2007)MathSciNetCrossRefMATH Gubarev, Yu.G.: On stability of steady-state plane–parallel shearing flows in a homogeneous in density ideal incompressible fluid. Nonlinear Anal. Hybrid Syst. 1, 103–118 (2007)MathSciNetCrossRefMATH
137.
Zurück zum Zitat Hoskins, B.J., James, I.N.: Fluid Dynamics of the Mid-Latitude Atmosphere. Wiley-Blackwell, Chichester (2014) Hoskins, B.J., James, I.N.: Fluid Dynamics of the Mid-Latitude Atmosphere. Wiley-Blackwell, Chichester (2014)
138.
Zurück zum Zitat Hoskins, B.J., Karoly, D.J.: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981)CrossRef Hoskins, B.J., Karoly, D.J.: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981)CrossRef
139.
Zurück zum Zitat Hoskins, B.J., Simmons, A.J., Andrews, D.G.: Energy dispersion in a barotropic atmosphere. Q. J. R. Meteorol. Soc. 103, 553–567 (1977)CrossRef Hoskins, B.J., Simmons, A.J., Andrews, D.G.: Energy dispersion in a barotropic atmosphere. Q. J. R. Meteorol. Soc. 103, 553–567 (1977)CrossRef
158.
Zurück zum Zitat Joseph, D.D.: Hydrodynamic stability and bifurcation. In: Swinney, H.L., Gollub, J.P. (eds.) Hydrodynamic Instabilities and the Transition to Turbulence. Topics in Applied Physics, vol. 45, pp. 27–76. Springer, Berlin (1985) Joseph, D.D.: Hydrodynamic stability and bifurcation. In: Swinney, H.L., Gollub, J.P. (eds.) Hydrodynamic Instabilities and the Transition to Turbulence. Topics in Applied Physics, vol. 45, pp. 27–76. Springer, Berlin (1985)
169.
Zurück zum Zitat Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis. Courier Dover Publications, New York (1999)MATH Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis. Courier Dover Publications, New York (1999)MATH
172.
Zurück zum Zitat Kundu, P.K.: Fluid Mechanics. Academic Press, San Diego (1990)MATH Kundu, P.K.: Fluid Mechanics. Academic Press, San Diego (1990)MATH
173.
Zurück zum Zitat Kundu, P.K., Cohen I.M., Dowling, D.R.: Fluid Mechanics. Elsevier, Amsterdam (2016)MATH Kundu, P.K., Cohen I.M., Dowling, D.R.: Fluid Mechanics. Elsevier, Amsterdam (2016)MATH
174.
Zurück zum Zitat Kuo, H.-L.: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorol. 6, 105–122 (1949)CrossRef Kuo, H.-L.: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorol. 6, 105–122 (1949)CrossRef
188.
Zurück zum Zitat La Salle, J., Lefschetz, S.: Stability by Liapunov’s Direct Method. Academic Press, New York (1961)MATH La Salle, J., Lefschetz, S.: Stability by Liapunov’s Direct Method. Academic Press, New York (1961)MATH
189.
Zurück zum Zitat Latushkin, Y., Li, Y.C., Stanislavova, M.: The spectrum of a linearized 2D Euler operator. Stud. Appl. Math. 112, 259–270 (2004)MathSciNetCrossRefMATH Latushkin, Y., Li, Y.C., Stanislavova, M.: The spectrum of a linearized 2D Euler operator. Stud. Appl. Math. 112, 259–270 (2004)MathSciNetCrossRefMATH
190.
195.
Zurück zum Zitat Liapunov, A.M.: Stability of Motion. Academic Press, New York (1966) Liapunov, A.M.: Stability of Motion. Academic Press, New York (1966)
196.
Zurück zum Zitat Liapunov, A.M.: The General Problem of the Stability of Motion, Translated by A. T. Fuller. Taylor & Francis, London (1992) Liapunov, A.M.: The General Problem of the Stability of Motion, Translated by A. T. Fuller. Taylor & Francis, London (1992)
199.
Zurück zum Zitat Lin, C.C.: The Theory of Hydrodynamic Stability. Cambridge University Press, Cambridge (1966) Lin, C.C.: The Theory of Hydrodynamic Stability. Cambridge University Press, Cambridge (1966)
202.
213.
Zurück zum Zitat Lyusternik, L.A., Sobolev, V.I.: Elements of Functional Analysis. Ungar, New York (1961)MATH Lyusternik, L.A., Sobolev, V.I.: Elements of Functional Analysis. Ungar, New York (1961)MATH
223.
224.
Zurück zum Zitat Marchioro, C., Pulvirenti, M.: Some considerations on the nonlinear stability of stationary planar Euler flows. Commun. Math. Phys. 100, 343–354 (1985)MathSciNetCrossRefMATH Marchioro, C., Pulvirenti, M.: Some considerations on the nonlinear stability of stationary planar Euler flows. Commun. Math. Phys. 100, 343–354 (1985)MathSciNetCrossRefMATH
226.
Zurück zum Zitat Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)CrossRefMATH Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)CrossRefMATH
265.
Zurück zum Zitat Palmer, T.N.: Properties of the Eliassen-Palm flux for planetary scale motions. J. Atmos. Sci. 39, 992–997 (1982)CrossRef Palmer, T.N.: Properties of the Eliassen-Palm flux for planetary scale motions. J. Atmos. Sci. 39, 992–997 (1982)CrossRef
268.
Zurück zum Zitat Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (2008)MATH Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (2008)MATH
273.
Zurück zum Zitat Pierrehumbert, R.T.: Bounds of the growth of perturbations to non-parallel steady flow on the barotropic beta plane. J. Atmos. Sci. 40, 1207–1217 (1983)CrossRef Pierrehumbert, R.T.: Bounds of the growth of perturbations to non-parallel steady flow on the barotropic beta plane. J. Atmos. Sci. 40, 1207–1217 (1983)CrossRef
281.
Zurück zum Zitat Rayleigh, L.: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. s1–11(1), 57–72 (1879) Rayleigh, L.: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. s1–11(1), 57–72 (1879)
283.
Zurück zum Zitat Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. 174, 935–982 (1883)CrossRefMATH Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. 174, 935–982 (1883)CrossRefMATH
284.
Zurück zum Zitat Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc 186, 123–161 (1894)CrossRefMATH Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc 186, 123–161 (1894)CrossRefMATH
286.
Zurück zum Zitat Reynolds, W.C., Potter, M.C.: Finite amplitude instability of parallel shear flows. J. Fluid Mech. 27, 465–492 (1967)CrossRefMATH Reynolds, W.C., Potter, M.C.: Finite amplitude instability of parallel shear flows. J. Fluid Mech. 27, 465–492 (1967)CrossRefMATH
288.
Zurück zum Zitat Ripa, P.: General stability conditions for zonal flows in a one-layer model on the β-plane or the sphere. J. Fluid Mech. 126, 463–489 (1983)MathSciNetCrossRefMATH Ripa, P.: General stability conditions for zonal flows in a one-layer model on the β-plane or the sphere. J. Fluid Mech. 126, 463–489 (1983)MathSciNetCrossRefMATH
292.
Zurück zum Zitat Rosenbluth, M.N., Simon, A.: Necessary and sufficient condition for the stability of plane parallel inviscid flow. Phys. Fluids 7, 557–558 (1964)CrossRefMATH Rosenbluth, M.N., Simon, A.: Necessary and sufficient condition for the stability of plane parallel inviscid flow. Phys. Fluids 7, 557–558 (1964)CrossRefMATH
304.
Zurück zum Zitat Sasaki, E., Takehiro, S.-I., Michio Yamada, M.: A note on the stability of inviscid zonal jet flows on a rotating sphere. J. Fluid Mech. 710, 154–165 (2012)MathSciNetCrossRefMATH Sasaki, E., Takehiro, S.-I., Michio Yamada, M.: A note on the stability of inviscid zonal jet flows on a rotating sphere. J. Fluid Mech. 710, 154–165 (2012)MathSciNetCrossRefMATH
313.
Zurück zum Zitat Shvydkoy, R., Friedlander, S.: On recent developments in the spectral problem for the linearized Euler equation. Contemp. Math. 371, 271–295 (2005)MathSciNetCrossRefMATH Shvydkoy, R., Friedlander, S.: On recent developments in the spectral problem for the linearized Euler equation. Contemp. Math. 371, 271–295 (2005)MathSciNetCrossRefMATH
314.
Zurück zum Zitat Shvydkoy, R., Latushkin, Y.: Essential spectrum of the linearized 2D Euler equation and Lyapunov–Oseledets exponents. J. Math. Fluid Mech. 7, 164–178 (2005)MathSciNetCrossRefMATH Shvydkoy, R., Latushkin, Y.: Essential spectrum of the linearized 2D Euler equation and Lyapunov–Oseledets exponents. J. Math. Fluid Mech. 7, 164–178 (2005)MathSciNetCrossRefMATH
316.
Zurück zum Zitat Simmons, A.J., Wallace, J.M., Branstator, G.W.: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci. 40(6), 1363–1392 (1983)CrossRef Simmons, A.J., Wallace, J.M., Branstator, G.W.: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci. 40(6), 1363–1392 (1983)CrossRef
319.
Zurück zum Zitat Skiba, Yu.N.: The Dynamics of Perturbations of Solutions to the Vorticity Equation for an Ideal Fluid on a Sphere, vol. 246, 46 pp., Department of Numerical Mathematics, Akad. Nauk SSSR. VINITI, Moscow (1989) (in Russian) Skiba, Yu.N.: The Dynamics of Perturbations of Solutions to the Vorticity Equation for an Ideal Fluid on a Sphere, vol. 246, 46 pp., Department of Numerical Mathematics, Akad. Nauk SSSR. VINITI, Moscow (1989) (in Russian)
320.
Zurück zum Zitat Skiba, Yu.N.: Mathematical Questions of the Dynamics of Viscous Barotropic Fluid on a Rotating Sphere. USSR Academy of Sciences, Moscow (in Russian) (1989) Skiba, Yu.N.: Mathematical Questions of the Dynamics of Viscous Barotropic Fluid on a Rotating Sphere. USSR Academy of Sciences, Moscow (in Russian) (1989)
322.
Zurück zum Zitat Skiba, Yu.N.: Rossby-Haurwitz wave stability. Izv. Atmos. Oceanic Phys. 28(5), 388–394 (1992)MathSciNet Skiba, Yu.N.: Rossby-Haurwitz wave stability. Izv. Atmos. Oceanic Phys. 28(5), 388–394 (1992)MathSciNet
324.
Zurück zum Zitat Skiba, Yu.N.: Dynamics of perturbations of the Rossby-Haurwitz wave and the Verkley modon. Atmósfera 6(2), 87–125 (1993) Skiba, Yu.N.: Dynamics of perturbations of the Rossby-Haurwitz wave and the Verkley modon. Atmósfera 6(2), 87–125 (1993)
331.
Zurück zum Zitat Skiba, Yu.N.: On the normal mode instability of harmonic waves on a sphere. Geophys. Astrophys. Fluid Dyn. 92(1–2), 115–127 (2000)MathSciNetCrossRef Skiba, Yu.N.: On the normal mode instability of harmonic waves on a sphere. Geophys. Astrophys. Fluid Dyn. 92(1–2), 115–127 (2000)MathSciNetCrossRef
332.
Zurück zum Zitat Skiba, Yu.N.: On the spectral problem in the linear stability study of flows on a sphere. J. Math. Anal. Appl. 270, 165–180 (2002)MathSciNetCrossRefMATH Skiba, Yu.N.: On the spectral problem in the linear stability study of flows on a sphere. J. Math. Anal. Appl. 270, 165–180 (2002)MathSciNetCrossRefMATH
334.
Zurück zum Zitat Skiba, Yu.N.: Instability of the Rossby-Haurwitz wave in invariant sets of perturbations. J. Math. Analys. Appl. 290(2), 686–701 (2004)MathSciNetCrossRefMATH Skiba, Yu.N.: Instability of the Rossby-Haurwitz wave in invariant sets of perturbations. J. Math. Analys. Appl. 290(2), 686–701 (2004)MathSciNetCrossRefMATH
335.
Zurück zum Zitat Skiba, Yu.N.: Nonlinear and linear instability of the Rossby-Haurwitz wave. J. Math. Sci. 149(6), 1708–1725 (2008)CrossRef Skiba, Yu.N.: Nonlinear and linear instability of the Rossby-Haurwitz wave. J. Math. Sci. 149(6), 1708–1725 (2008)CrossRef
339.
Zurück zum Zitat Skiba, Yu.N.: Evolution of energy of perturbations in barotropic atmosphere. Commun. Math. Anal. 17 (2), 344–358 (2014)MathSciNetMATH Skiba, Yu.N.: Evolution of energy of perturbations in barotropic atmosphere. Commun. Math. Anal. 17 (2), 344–358 (2014)MathSciNetMATH
342.
Zurück zum Zitat Skiba, Yu.N., Adem, J.: On the linear stability study of zonal incompressible flows on a sphere. Numer. Methods Partial Differ. Equ. 14, 649–665 (1998)MathSciNetCrossRefMATH Skiba, Yu.N., Adem, J.: On the linear stability study of zonal incompressible flows on a sphere. Numer. Methods Partial Differ. Equ. 14, 649–665 (1998)MathSciNetCrossRefMATH
354.
Zurück zum Zitat Squire, H.B.: On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc. R. Soc. Lond. Ser. A 142, 621–628 (1933)CrossRefMATH Squire, H.B.: On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc. R. Soc. Lond. Ser. A 142, 621–628 (1933)CrossRefMATH
359.
Zurück zum Zitat Swaters, G.E.: Stability conditions and a priori estimates for equivalent-barotropic modons. Phys. Fluids 29(5), 1419–1422 (1986)MathSciNetCrossRefMATH Swaters, G.E.: Stability conditions and a priori estimates for equivalent-barotropic modons. Phys. Fluids 29(5), 1419–1422 (1986)MathSciNetCrossRefMATH
360.
Zurück zum Zitat Swaters, G.E.: Introduction to Hamiltonian Fluid Dynamics and Stability Theory. Chapman & Hall/CRC, Boca Raton (2000)MATH Swaters, G.E.: Introduction to Hamiltonian Fluid Dynamics and Stability Theory. Chapman & Hall/CRC, Boca Raton (2000)MATH
367.
Zurück zum Zitat Thuburn, J., Haynes, P.H.: Bounds on the growth rate and phase velocity of instabilities in non-divergent barotropic flow on a sphere: A semicircle theorem. Q. J. R. Meteorol. Soc. 122, 779–787 (1996)CrossRef Thuburn, J., Haynes, P.H.: Bounds on the growth rate and phase velocity of instabilities in non-divergent barotropic flow on a sphere: A semicircle theorem. Q. J. R. Meteorol. Soc. 122, 779–787 (1996)CrossRef
368.
Zurück zum Zitat Tollmien, W.: Ein allgemeines kriterium der instabilität laminarer Geschwindigkeitsverteilungen. Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. Fachgruppe 50, 79–114 (1935). Translated as “General instability criterion of laminar velocity distributions”. Tech. Memor. Nat. Adv. Comm. Aero., Wash. No. 792 (1936) Tollmien, W.: Ein allgemeines kriterium der instabilität laminarer Geschwindigkeitsverteilungen. Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. Fachgruppe 50, 79–114 (1935). Translated as “General instability criterion of laminar velocity distributions”. Tech. Memor. Nat. Adv. Comm. Aero., Wash. No. 792 (1936)
380.
Zurück zum Zitat Vishik, M., Friedlander, S.: Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Commun. Math. Phys. 243, 261–273 (2003)MathSciNetCrossRefMATH Vishik, M., Friedlander, S.: Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Commun. Math. Phys. 243, 261–273 (2003)MathSciNetCrossRefMATH
381.
Zurück zum Zitat Vladimirov, V.A.: Direct Lyapunov method in problems of fluid equilibrium instability. Arch. Mech. 42(4–5), 595–607 (1990)MATH Vladimirov, V.A.: Direct Lyapunov method in problems of fluid equilibrium instability. Arch. Mech. 42(4–5), 595–607 (1990)MATH
384.
Zurück zum Zitat Wallace, J.M., Blackmon, M.L.: Observations of low-frequency atmospheric variability. In: Hoskins, B.J., Pearce, R.P. (eds.) Large-scale Dynamical Processes in the Atmosphere, pp. 55–93. Academic Press, London (1983) Wallace, J.M., Blackmon, M.L.: Observations of low-frequency atmospheric variability. In: Hoskins, B.J., Pearce, R.P. (eds.) Large-scale Dynamical Processes in the Atmosphere, pp. 55–93. Academic Press, London (1983)
389.
Zurück zum Zitat Warsi, Z.U.A.: Fluid Dynamics. Theoretical and Computational Approaches. CRC Press, Boca Raton (2006)MATH Warsi, Z.U.A.: Fluid Dynamics. Theoretical and Computational Approaches. CRC Press, Boca Raton (2006)MATH
406.
Zurück zum Zitat Zduncowski, W., Bott, A.: Dynamics of the Atmosphere. A Course in Theoretical Meteorology. Cambridge University Press, Cambridge (2003)CrossRef Zduncowski, W., Bott, A.: Dynamics of the Atmosphere. A Course in Theoretical Meteorology. Cambridge University Press, Cambridge (2003)CrossRef
408.
Zurück zum Zitat Zeng, Q., Lu, P., Li, R., Yaun, C.: Evolution of large scale disturbances and their interaction with mean flow in a rotating barotropic atmosphere. Part 1. Adv. Atmos. Sci. 3(1), 39–58 (1986) Zeng, Q., Lu, P., Li, R., Yaun, C.: Evolution of large scale disturbances and their interaction with mean flow in a rotating barotropic atmosphere. Part 1. Adv. Atmos. Sci. 3(1), 39–58 (1986)
410.
Zurück zum Zitat Zhuk, A.S., Zhuk, V.V.: On approximating periodic functions using linear approximation methods. J. Math. Sci. 143(3), 3090–3107 (2007)CrossRef Zhuk, A.S., Zhuk, V.V.: On approximating periodic functions using linear approximation methods. J. Math. Sci. 143(3), 3090–3107 (2007)CrossRef
411.
Zurück zum Zitat Zubov, V.I.: Methods of A. M. Lyapunov and Their Application. Noordhoff Ltd., Groningen (1964)MATH Zubov, V.I.: Methods of A. M. Lyapunov and Their Application. Noordhoff Ltd., Groningen (1964)MATH
Metadaten
Titel
Linear and Nonlinear Stability of Flows
verfasst von
Yuri N. Skiba
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-65412-6_7