Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Linear Forms in Logarithms

verfasst von : Sanda Bujačić, Alan Filipin

Erschienen in: Diophantine Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hilbert’s problems form a list of twenty-three problems in mathematics published by David Hilbert, a German mathematician, in 1900. The problems were all unsolved at the time and several of them were very influential for 20th century mathematics. Hilbert believed it was essential for mathematicians to find new machineries and methods in order to solve the mentioned problems. The seventh problem deals with the transcendence of \(\alpha ^\beta \) for algebraic \(\alpha \ne 0,1\) and irrational algebraic \(\beta \). This problem was solved by Gelfond and (independently) Schneider. In 1935, Gelfond found a lower bound for the absolute value of the linear form
$$\varLambda =\beta _1\log \alpha _1+\beta _2\log \alpha _2\ne 0.$$
He proved that
$$\log |\varLambda |\gg -h(\varLambda )^\kappa ,$$
where \(h(\varLambda )\) is logarithmic height of the linear form \(\varLambda \), \(\kappa >5\) and \(\gg \) denotes inequality that is valid up to an unspecified constant factor. He noticed that generalization of his results could prove a huge amount of unsolved problems in number theory.
In 1966 and 1967, in his papers “Linear forms in logarithms of algebraic numbers I, II, III”, A. Baker gave an effective lower bound on the absolute value of a nonzero linear form in logarithms of algebraic numbers, that is, for a nonzero expression of the form
$$\sum _{i=1}^{n}b_i\log \alpha _i,$$
where \(\alpha _1, \dots , \alpha _n\) are algebraic numbers and \(b_1, \dots , b_n\) are integers.
In these notes, we introduce definitions and theorems that are crucial for understanding and applications of linear forms in logarithms. Some Baker type inequalities that are easy to apply are introduced. In order to illustrate this very important machinery, we present some examples and show, among other things, that the largest Fibonacci number having only one repeated digit in its decimal expression is 55, that \(d=120\) is the only positive integer such that the set \(\{d+1, 3d+1, 8d+1\}\) consists of all perfect squares and that some parametric families of \(D(-1)\)-triples cannot be extended to \(D(-1)\)-quadruples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Peter Gustav Lejeune Dirichlet (1805–1859), a German mathematician.
 
2
Adolf Hurwitz (1859–1919), a German mathematician.
 
3
Theodor Vahlen (1869–1945), an Austrian mathematician.
 
4
Émile Borel (1871–1956), a French mathematician.
 
5
Adrien-Marie Legendre (1752–1833), a French matheamtician.
 
6
Leonhard Euler (1707–1783), a Swiss mathematician.
 
7
Joseph-Louis Lagrange (1736–1813), an Italian-French mathematician.
 
8
Joseph Liouville (1809–1882), a French mathematician.
 
9
Georg Ferdinand Ludwig Philipp Cantor (1845–1918), a German mathematician.
 
10
Charles Hermite (1822–1901), a French mathematician.
 
11
Ferdinand von Lindemann (1852–1939), a German mathematician.
 
12
Karl Weierstrass (1815–1897), a German mathematician.
 
13
Axel Thue (1863–1922), a Norwegian mathematician.
 
14
Carl Ludwig Siegel (1896–1981), a German mathematician.
 
15
Freeman Dyson (1923), an English-born American mathematician.
 
16
Klaus Friedrich Roth (1925–2015), a German-born British mathematician.
 
17
Kurt Mahler (1903–1988), a German/British mathematician.
 
18
OEIS A033307.
 
19
David Hilbert (1862–1943), a German mathematician.
 
20
Alexander Osipovich Gelfond (1906–1968), a Soviet mathematician.
 
21
Theodor Schneider (1911–1988), a German mathematician.
 
22
Alan Baker (1939), an English mathematician.
 
23
Eugene Mikhailovich Mateveev (1955), a Russian mathematician.
 
24
Gisbert Wüstholz (1948), a German mathematician.
 
25
Harold Davenport (1907–1969), an English mathematician.
 
26
Andrej Dujella (1966), a Croatian mathematician.
 
27
Attila Pethő (1950), a Hungarian mathematician.
 
28
Pierre de Fermat (1601–1665), a French mathematician.
 
29
Michel Laurent, a French mathematician.
 
30
Maurice Mignotte, a French mathematician.
 
31
Yuri Valentinovich Nesterenko (1946), a Soviet and Russian mathematician.
 
32
Subbayya Sivasankaranarayana Pillai (1901–1950), an Indian mathematician.
 
Literatur
1.
Zurück zum Zitat A. Baker, Linear forms in the logarithms of algebraic numbers, I. Mathematika J. Pure Appl. Math. 13, 204–216 (1966)MATH A. Baker, Linear forms in the logarithms of algebraic numbers, I. Mathematika J. Pure Appl. Math. 13, 204–216 (1966)MATH
2.
Zurück zum Zitat A. Baker, Linear forms in the logarithms of algebraic numbers, II. Mathematika.J. Pure Appl. Math. 14, 102–107 (1967)MathSciNetMATH A. Baker, Linear forms in the logarithms of algebraic numbers, II. Mathematika.J. Pure Appl. Math. 14, 102–107 (1967)MathSciNetMATH
3.
Zurück zum Zitat A. Baker, Linear forms in the logarithms of algebraic numbers, III. Mathematika J. Pure Appl. Math. 14, 220–228 (1967)MathSciNetMATH A. Baker, Linear forms in the logarithms of algebraic numbers, III. Mathematika J. Pure Appl. Math. 14, 220–228 (1967)MathSciNetMATH
4.
5.
6.
Zurück zum Zitat A. Baker, G. Wüstholz, Logarithmic forms and group varieties. J. für die Reine und Angewandte Mathematik 442, 19–62 (1993)MathSciNetMATH A. Baker, G. Wüstholz, Logarithmic forms and group varieties. J. für die Reine und Angewandte Mathematik 442, 19–62 (1993)MathSciNetMATH
8.
Zurück zum Zitat M. Bennett, Rational approximation to algebraic numbers of small height: the Diophantine equation \(| ax^n-by^n |= 1\). J. Reine Angew. Math. 535, 1–49 (2001)MathSciNetCrossRefMATH M. Bennett, Rational approximation to algebraic numbers of small height: the Diophantine equation \(| ax^n-by^n |= 1\). J. Reine Angew. Math. 535, 1–49 (2001)MathSciNetCrossRefMATH
9.
Zurück zum Zitat E. Borel, Contribution a l’analyse arithmétique du continu. J. Math. Pures Appl. 9, 329–375 (1903)MATH E. Borel, Contribution a l’analyse arithmétique du continu. J. Math. Pures Appl. 9, 329–375 (1903)MATH
10.
Zurück zum Zitat Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. 163(3), 969–1018 (2006)MathSciNetCrossRefMATH Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. 163(3), 969–1018 (2006)MathSciNetCrossRefMATH
11.
Zurück zum Zitat E.B. Burger, R. Tubbs, Making Transcendence Transparent: An Intuitive Approach to Classical Transcendental Number Theory (Springer, New York, 2004)CrossRefMATH E.B. Burger, R. Tubbs, Making Transcendence Transparent: An Intuitive Approach to Classical Transcendental Number Theory (Springer, New York, 2004)CrossRefMATH
12.
Zurück zum Zitat J.W.S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 45 (Cambridge University Press, Cambridge, 1957) J.W.S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 45 (Cambridge University Press, Cambridge, 1957)
13.
Zurück zum Zitat H. Cohen, Number Theory, Volume I: Tools and Diophantine Equations (Springer, Berlin, 2007)MATH H. Cohen, Number Theory, Volume I: Tools and Diophantine Equations (Springer, Berlin, 2007)MATH
14.
Zurück zum Zitat H. Cohen, Number Theory, Volume II: Analytic And Modern Tools (Springer, Berlin, 2007)MATH H. Cohen, Number Theory, Volume II: Analytic And Modern Tools (Springer, Berlin, 2007)MATH
15.
Zurück zum Zitat A. Dujella, The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51, 311–322 (1997)MathSciNetMATH A. Dujella, The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51, 311–322 (1997)MathSciNetMATH
16.
18.
Zurück zum Zitat A. Dujella, There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)MathSciNetMATH A. Dujella, There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)MathSciNetMATH
19.
Zurück zum Zitat A. Dujella, Diofantske jednadžbe, course notes, Zagreb (2006/2007) A. Dujella, Diofantske jednadžbe, course notes, Zagreb (2006/2007)
20.
Zurück zum Zitat A. Dujella, Diofantske aproksimacije i primjene, course notes, Zagreb (2011/2012) A. Dujella, Diofantske aproksimacije i primjene, course notes, Zagreb (2011/2012)
21.
22.
Zurück zum Zitat A. Dujella, A. Pethő, Generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49, 291–306 (1998)MathSciNetCrossRefMATH A. Dujella, A. Pethő, Generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49, 291–306 (1998)MathSciNetCrossRefMATH
23.
Zurück zum Zitat A. Dujella, A. Filipin, C. Fuchs, Effective solution of the \(D(-1)\)- quadruple conjecture. Acta Arith. 128, 319–338 (2007)MathSciNetCrossRefMATH A. Dujella, A. Filipin, C. Fuchs, Effective solution of the \(D(-1)\)- quadruple conjecture. Acta Arith. 128, 319–338 (2007)MathSciNetCrossRefMATH
24.
Zurück zum Zitat C. Elsholtz, A. Filipin, Y. Fujita, On Diophantine quintuples and \(D(-1)\) -quadruples. Monatsh. Math. 175(2), 227–239 (2014)MathSciNetCrossRefMATH C. Elsholtz, A. Filipin, Y. Fujita, On Diophantine quintuples and \(D(-1)\) -quadruples. Monatsh. Math. 175(2), 227–239 (2014)MathSciNetCrossRefMATH
25.
Zurück zum Zitat A. Filipin, Linearne forme u logaritmima i diofantska analiza, course notes, Zagreb (2010) A. Filipin, Linearne forme u logaritmima i diofantska analiza, course notes, Zagreb (2010)
26.
Zurück zum Zitat A. Filipin, Y. Fujita, M. Mignotte, The non-extendibility of some parametric families of D(-1)-triples. Q. J. Math. 63(3), 605–621 (2012)MathSciNetCrossRefMATH A. Filipin, Y. Fujita, M. Mignotte, The non-extendibility of some parametric families of D(-1)-triples. Q. J. Math. 63(3), 605–621 (2012)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Y. Fujita, The extensibility of \(D(-1)\) -triples \(\{1, b, c\}\). Publ. Math. Debrecen 70, 103–117 (2007)MathSciNetMATH Y. Fujita, The extensibility of \(D(-1)\) -triples \(\{1, b, c\}\). Publ. Math. Debrecen 70, 103–117 (2007)MathSciNetMATH
28.
Zurück zum Zitat A.O. Gelfond, Transcendental and Algebraic Numbers, translated by Leo F. (Dover Publications, Boron, 1960) A.O. Gelfond, Transcendental and Algebraic Numbers, translated by Leo F. (Dover Publications, Boron, 1960)
29.
Zurück zum Zitat B. He, A. Togbé, On the \(D(-1)\) -triple \(\{1, k^2+1, k^2+2k+2\}\) and its unique \(D(1)\) -extension. J. Number Theory 131, 120–137 (2011)MathSciNetCrossRefMATH B. He, A. Togbé, On the \(D(-1)\) -triple \(\{1, k^2+1, k^2+2k+2\}\) and its unique \(D(1)\) -extension. J. Number Theory 131, 120–137 (2011)MathSciNetCrossRefMATH
30.
Zurück zum Zitat M. Hindry, J.H. Silverman, Diophantine Geometry: An Introduction (Springer, New York, 2000)CrossRefMATH M. Hindry, J.H. Silverman, Diophantine Geometry: An Introduction (Springer, New York, 2000)CrossRefMATH
31.
Zurück zum Zitat A. Hurwitz, Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche (On the approximation of irrational numbers by rational numbers). Mathematische Annalen (in German) 39(2), 279–284 (1891)MathSciNetCrossRef A. Hurwitz, Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche (On the approximation of irrational numbers by rational numbers). Mathematische Annalen (in German) 39(2), 279–284 (1891)MathSciNetCrossRef
32.
Zurück zum Zitat S. Lang, Introduction to Diophantine Approximations (Addison-Wesley, Reading, 1966)MATH S. Lang, Introduction to Diophantine Approximations (Addison-Wesley, Reading, 1966)MATH
33.
Zurück zum Zitat M. Laurent, M. Mignotte, Yu. Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55, 285–321 (1995)MathSciNetCrossRef M. Laurent, M. Mignotte, Yu. Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55, 285–321 (1995)MathSciNetCrossRef
35.
Zurück zum Zitat V.A. Lebesgue, Sur l’impossbilité en nombres entiers de l’équation \(x^m=y^2+1\). Nouv. Ann. Math. 9, 178–181 (1850) V.A. Lebesgue, Sur l’impossbilité en nombres entiers de l’équation \(x^m=y^2+1\). Nouv. Ann. Math. 9, 178–181 (1850)
36.
Zurück zum Zitat F. Luca, Diophantine Equations, lecture notes for Winter School on Explicit Methods in Number Theory (Debrecen, Hungary, 2009) F. Luca, Diophantine Equations, lecture notes for Winter School on Explicit Methods in Number Theory (Debrecen, Hungary, 2009)
37.
Zurück zum Zitat K. Mahler, Zur approximation der exponentialfunktion und des logarithmus, I, II. J. reine angew. Math. 166, 118–136, 136–150 (1932) K. Mahler, Zur approximation der exponentialfunktion und des logarithmus, I, II. J. reine angew. Math. 166, 118–136, 136–150 (1932)
38.
Zurück zum Zitat K. Mahler, Arithmetische Eigenschaften einer Klasse von Dezimalbruchen. Proc. Kon. Nederlansche Akad. Wetensch. 40, 421–428 (1937)MATH K. Mahler, Arithmetische Eigenschaften einer Klasse von Dezimalbruchen. Proc. Kon. Nederlansche Akad. Wetensch. 40, 421–428 (1937)MATH
39.
Zurück zum Zitat E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers I, II, Izvestiya: Mathematics, 62(4), 723–772 (1998); 64(6), 125–180 (2000) E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers I, II, Izvestiya: Mathematics, 62(4), 723–772 (1998); 64(6), 125–180 (2000)
40.
41.
Zurück zum Zitat O. Perron, Die Lehre von den Kettenbrüchen (Chelsea, New York, 1950)MATH O. Perron, Die Lehre von den Kettenbrüchen (Chelsea, New York, 1950)MATH
42.
Zurück zum Zitat S. S. Pillai, On \(a^x-b^y=c\), J. Indian Math. Soc. (N.S.) (2), 119–122 (1936) S. S. Pillai, On \(a^x-b^y=c\), J. Indian Math. Soc. (N.S.) (2), 119–122 (1936)
44.
Zurück zum Zitat J.D. Sally, P.J. Sally Jr., Roots to Research: A Vertical Development of Mathematical Problems (American Mathematical Society, Providence, 2007)CrossRefMATH J.D. Sally, P.J. Sally Jr., Roots to Research: A Vertical Development of Mathematical Problems (American Mathematical Society, Providence, 2007)CrossRefMATH
45.
Zurück zum Zitat W.M. Schmidt, Diophantine Approximation, vol. 785, Lecture Notes in Mathematics (Springer, Berlin, 1980)MATH W.M. Schmidt, Diophantine Approximation, vol. 785, Lecture Notes in Mathematics (Springer, Berlin, 1980)MATH
46.
Zurück zum Zitat J. Steuding, Diophantine Analysis (Discrete Mathematics and Its Applications) (Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, 2005)MATH J. Steuding, Diophantine Analysis (Discrete Mathematics and Its Applications) (Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, 2005)MATH
47.
Zurück zum Zitat A. Thue, Über Annäherungswerte algebraischer Zahlen. J. Reine und Angew. Math. 135, 284–305 (1909)MathSciNet A. Thue, Über Annäherungswerte algebraischer Zahlen. J. Reine und Angew. Math. 135, 284–305 (1909)MathSciNet
48.
Zurück zum Zitat T. Vahlen, Über Näherungswerthe und Kettenbr üche, J. Reine Angew. Math. (Crelle), 115(3),221–233 (1895) T. Vahlen, Über Näherungswerthe und Kettenbr üche, J. Reine Angew. Math. (Crelle), 115(3),221–233 (1895)
Metadaten
Titel
Linear Forms in Logarithms
verfasst von
Sanda Bujačić
Alan Filipin
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-48817-2_1