Skip to main content
Erschienen in: Strength of Materials 4/2017

15.11.2017

Linear Micropolar Elasticity Analysis of Stresses in Bones Under Static Loads

verfasst von: V. A. Eremeyev, A. Skrzat, F. Stachowicz

Erschienen in: Strength of Materials | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We discuss the finite element modeling of porous materials such as bones using the linear micropolar elasticity. In order to solve static boundary-value problems, we developed new finite elements, which capture the micropolar behavior of the material. Developed elements were implemented in the commercial software ABAQUS. The modeling of a femur bone with and without implant under various stages of healing is discussed in details.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Cowin (Ed.), Bone Mechanics Handbook, CRC Press LLC, Boca Raton (2001). S. Cowin (Ed.), Bone Mechanics Handbook, CRC Press LLC, Boca Raton (2001).
2.
Zurück zum Zitat Y. H. An and R. A. Draughn (Eds.), Mechanical Testing of Bone and the Bone- Implant Interface, CRC Press LLC, Boca Raton (2000). Y. H. An and R. A. Draughn (Eds.), Mechanical Testing of Bone and the Bone- Implant Interface, CRC Press LLC, Boca Raton (2000).
3.
Zurück zum Zitat S. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elasticity, 6, No. 3, 313–326 (1976).CrossRef S. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elasticity, 6, No. 3, 313–326 (1976).CrossRef
4.
Zurück zum Zitat D. H. Hegedus and S. C. Cowin, “Bone remodeling II: small strain adaptive elasticity,” J. Elasticity, 6, No. 4, 337–352 (1976).CrossRef D. H. Hegedus and S. C. Cowin, “Bone remodeling II: small strain adaptive elasticity,” J. Elasticity, 6, No. 4, 337–352 (1976).CrossRef
5.
Zurück zum Zitat R. S. Lakes and J. F. Yang, “Transient study of couple stress effects in compact bone: torsion,” J. Biomech. Eng., 103, 275–279 (1981).CrossRef R. S. Lakes and J. F. Yang, “Transient study of couple stress effects in compact bone: torsion,” J. Biomech. Eng., 103, 275–279 (1981).CrossRef
6.
Zurück zum Zitat J. F. C. Yang and R. S. Lakes, “Experimental study of micropolar and couple stress elasticity in compact bone in bending,” J. Biomech., 15, No 2, 91–98 (1982).CrossRef J. F. C. Yang and R. S. Lakes, “Experimental study of micropolar and couple stress elasticity in compact bone in bending,” J. Biomech., 15, No 2, 91–98 (1982).CrossRef
7.
Zurück zum Zitat H. C. Park and R. S. Lakes, “Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent,” J. Biomech., 19, No. 5, 385–397 (1986).CrossRef H. C. Park and R. S. Lakes, “Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent,” J. Biomech., 19, No. 5, 385–397 (1986).CrossRef
8.
Zurück zum Zitat R. S. Lakes, “Experimental microelasticity of two porous solids,” Int. J. Solids Struct., 22, No. 1, 55–63 (1986).CrossRef R. S. Lakes, “Experimental microelasticity of two porous solids,” Int. J. Solids Struct., 22, No. 1, 55–63 (1986).CrossRef
9.
Zurück zum Zitat R. S. Lakes, “Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua,” J. Eng. Mater. Technol., 113, No. 1, 148–155 (1991).CrossRef R. S. Lakes, “Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua,” J. Eng. Mater. Technol., 113, No. 1, 148–155 (1991).CrossRef
10.
Zurück zum Zitat I. Goda, M. Assidi, S. Belouettar, and J. F. Ganghoffer, “A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization,” J. Mech. Behav. Biomed., 16, 87–108 (2012).CrossRef I. Goda, M. Assidi, S. Belouettar, and J. F. Ganghoffer, “A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization,” J. Mech. Behav. Biomed., 16, 87–108 (2012).CrossRef
11.
Zurück zum Zitat I. Goda, M. Assidi, and J. F. Ganghoffer, “3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure,” Biomech. Model. Mechan., 13, No. 1, 53–83 (2014).CrossRef I. Goda, M. Assidi, and J. F. Ganghoffer, “3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure,” Biomech. Model. Mechan., 13, No. 1, 53–83 (2014).CrossRef
12.
Zurück zum Zitat I. Goda and J. F. Ganghoffer, “Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures,” J. Mech. Behav. Biomed., 51, 99–118 (2015).CrossRef I. Goda and J. F. Ganghoffer, “Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures,” J. Mech. Behav. Biomed., 51, 99–118 (2015).CrossRef
13.
Zurück zum Zitat I. Goda, F. Dos Reis, and J. F. Ganghoffer, “Limit analysis of lattices based on the asymptotic homogenization method and prediction of size effects in bone plastic collapse,” in: H. Altenbach and S. Forest (Eds.), Generalized Continua as Models for Classical and Advanced Materials, Springer International Publishing (2016), pp. 179– 211. I. Goda, F. Dos Reis, and J. F. Ganghoffer, “Limit analysis of lattices based on the asymptotic homogenization method and prediction of size effects in bone plastic collapse,” in: H. Altenbach and S. Forest (Eds.), Generalized Continua as Models for Classical and Advanced Materials, Springer International Publishing (2016), pp. 179– 211.
14.
Zurück zum Zitat I. Goda, R. Rahouadj, J. F. Ganghoffer, et al., “3D couple-stress moduli of porous polymeric biomaterials using μCT image stack and FE characterization,” Int. J. Eng. Sci., 100, 25–44 (2016).CrossRef I. Goda, R. Rahouadj, J. F. Ganghoffer, et al., “3D couple-stress moduli of porous polymeric biomaterials using μCT image stack and FE characterization,” Int. J. Eng. Sci., 100, 25–44 (2016).CrossRef
15.
Zurück zum Zitat F. Dell’Isola F., D. Steigmann, and A. Della Corte, “Synthesis of fibrous complex structures: Designing microstructure to deliver targeted macroscale response,” Appl. Mech. Rev., 67, No. 6, 060804–060804-21 (2016). F. Dell’Isola F., D. Steigmann, and A. Della Corte, “Synthesis of fibrous complex structures: Designing microstructure to deliver targeted macroscale response,” Appl. Mech. Rev., 67, No. 6, 060804–060804-21 (2016).
16.
Zurück zum Zitat F. Dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium,” Proc. Roy. Soc. A, 472, No. 2185 (2016), DOI: https://doi.org/10.1098/rspa.2015.0790. F. Dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium,” Proc. Roy. Soc. A, 472, No. 2185 (2016), DOI: https://​doi.​org/​10.​1098/​rspa.​2015.​0790.
17.
Zurück zum Zitat D. Scerrato, I. Giorgio, and N. L. Rizzi, “Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations,” Z. Angew. Math. Phys., 67, No. 3, Article No. 53 (2016). D. Scerrato, I. Giorgio, and N. L. Rizzi, “Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations,” Z. Angew. Math. Phys., 67, No. 3, Article No. 53 (2016).
18.
Zurück zum Zitat F. Dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium,” Proc. R. Soc. A, 472, No. 2185 (2016), DOI: https://doi.org/10.1098/rspa.2015.0790. F. Dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium,” Proc. R. Soc. A, 472, No. 2185 (2016), DOI: https://​doi.​org/​10.​1098/​rspa.​2015.​0790.
19.
Zurück zum Zitat E. Turco, F. Dell’Isola, A. Cazzani, and N. L. Rizzi, “Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models,” Z. Angew. Math. Phys., 67, No. 4, 1–28 (2016).CrossRef E. Turco, F. Dell’Isola, A. Cazzani, and N. L. Rizzi, “Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models,” Z. Angew. Math. Phys., 67, No. 4, 1–28 (2016).CrossRef
20.
Zurück zum Zitat M. Cuomo, F. Dell’Isola, L. Greco, and N. L. Rizzi, “First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities,” Compos. Part B - Eng., 115, 423–448 (2017).CrossRef M. Cuomo, F. Dell’Isola, L. Greco, and N. L. Rizzi, “First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities,” Compos. Part B - Eng., 115, 423–448 (2017).CrossRef
22.
Zurück zum Zitat T. Lekszycki and F. Dell’Isola, “A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio- resorbable materials,” Z. Angew. Math. Mech., 92, No. 6, 426–444 (2012).CrossRef T. Lekszycki and F. Dell’Isola, “A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio- resorbable materials,” Z. Angew. Math. Mech., 92, No. 6, 426–444 (2012).CrossRef
23.
Zurück zum Zitat I. Giorgio, U. Andreaus, D. Scerrato, and F. Dell’Isola, “A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials,” Biomech. Model. Mechan., 15, No. 5, 1325-1343 (2016).CrossRef I. Giorgio, U. Andreaus, D. Scerrato, and F. Dell’Isola, “A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials,” Biomech. Model. Mechan., 15, No. 5, 1325-1343 (2016).CrossRef
24.
Zurück zum Zitat I. Giorgio, U. Andreaus, D. Scerrato, and P. Braidotti, “Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material,” Math. Mech. Solids (2016), DOI: https://doi.org/10.1177/1081286516644867. I. Giorgio, U. Andreaus, D. Scerrato, and P. Braidotti, “Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material,” Math. Mech. Solids (2016), DOI: https://​doi.​org/​10.​1177/​1081286516644867​.
25.
Zurück zum Zitat I. Giorgio, U. Andreaus, T. Lekszycki, and A. Della Corte, “The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bio-resorbable material mixture with voids,” Math. Mech. Solids (2015), DOI: https://doi.org/10.1177/ 1081286515616052. I. Giorgio, U. Andreaus, T. Lekszycki, and A. Della Corte, “The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bio-resorbable material mixture with voids,” Math. Mech. Solids (2015), DOI: https://​doi.​org/​10.​1177/​ 1081286515616052.
26.
Zurück zum Zitat G. Mishuris, “Models of an interaction between two elastic media one of which is weakened by a symmetrical angular cut,” Vestn. Leningrad Univ. Math., 62–66 (1985). G. Mishuris, “Models of an interaction between two elastic media one of which is weakened by a symmetrical angular cut,” Vestn. Leningrad Univ. Math., 62–66 (1985).
27.
Zurück zum Zitat E. Radi, “Effects of characteristic material lengths on mode III crack propagation in couple stress elastic–plastic materials,” Int. J. Plasticity, 23, No. 8, 1439–1456 (2007).CrossRef E. Radi, “Effects of characteristic material lengths on mode III crack propagation in couple stress elastic–plastic materials,” Int. J. Plasticity, 23, No. 8, 1439–1456 (2007).CrossRef
28.
Zurück zum Zitat E. Radi, “On the effects of the characteristic lengths in bending and torsion on Mode III crack in couple stress elasticity,” Int. J. Solids Struct., 45, No. 10, 3033–3058 (2008).CrossRef E. Radi, “On the effects of the characteristic lengths in bending and torsion on Mode III crack in couple stress elasticity,” Int. J. Solids Struct., 45, No. 10, 3033–3058 (2008).CrossRef
29.
Zurück zum Zitat A. Piccolroaz, G. Mishuris, and E. Radi, “Mode III interfacial crack in the presence of couple-stress elastic materials,” Eng. Fract. Mech., 80, 60–71 (2012).CrossRef A. Piccolroaz, G. Mishuris, and E. Radi, “Mode III interfacial crack in the presence of couple-stress elastic materials,” Eng. Fract. Mech., 80, 60–71 (2012).CrossRef
30.
Zurück zum Zitat G. Mishuris, A. Piccolroaz, and E. Radi, “Steady-state propagation of a Mode III crack in couple stress elastic materials,” Int. J. Eng. Sci., 61, 112–128 (2012).CrossRef G. Mishuris, A. Piccolroaz, and E. Radi, “Steady-state propagation of a Mode III crack in couple stress elastic materials,” Int. J. Eng. Sci., 61, 112–128 (2012).CrossRef
31.
Zurück zum Zitat L. Morini, A. Piccolroaz, G. Mishuris, and E. Radi, “On fracture criteria for dynamic crack propagation in elastic materials with couple stresses,” Int. J. Eng. Sci., 71, 45–61 (2013).CrossRef L. Morini, A. Piccolroaz, G. Mishuris, and E. Radi, “On fracture criteria for dynamic crack propagation in elastic materials with couple stresses,” Int. J. Eng. Sci., 71, 45–61 (2013).CrossRef
32.
Zurück zum Zitat L. Morini, A. Piccolroaz, and G. Mishuris, “Dynamic energy release rate in couple- stress elasticity,” J. Phys. Conf. Ser., 451, No. 1, 012014 (2013). L. Morini, A. Piccolroaz, and G. Mishuris, “Dynamic energy release rate in couple- stress elasticity,” J. Phys. Conf. Ser., 451, No. 1, 012014 (2013).
33.
Zurück zum Zitat L. Morini, A. Piccolroaz, and G. Mishuris, “Remarks on the energy release rate for an antiplane moving crack in couple stress elasticity,” Int. J. Solids Struct., 51, No. 18, 3087–3100 (2014).CrossRef L. Morini, A. Piccolroaz, and G. Mishuris, “Remarks on the energy release rate for an antiplane moving crack in couple stress elasticity,” Int. J. Solids Struct., 51, No. 18, 3087–3100 (2014).CrossRef
34.
Zurück zum Zitat V. A. Eremeyev, A. Skrzat, and F. Stachowicz, “On finite element computations of contact problems in micropolar elasticity,” Adv. Mater. Sci. Eng., Article ID 9675604, 1–9 (2016). V. A. Eremeyev, A. Skrzat, and F. Stachowicz, “On finite element computations of contact problems in micropolar elasticity,” Adv. Mater. Sci. Eng., Article ID 9675604, 1–9 (2016).
35.
Zurück zum Zitat V. A. Eremeyev, A. Skrzat, and A. Vinakurava, “Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction,” Strength Mater., 48, No. 4, 573–582 (2016).CrossRef V. A. Eremeyev, A. Skrzat, and A. Vinakurava, “Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction,” Strength Mater., 48, No. 4, 573–582 (2016).CrossRef
36.
Zurück zum Zitat V. A. Eremeyev, A. Skrzat, and F. Stachowicz, “On FEM evaluation of stress concentration in micropolar elastic materials,” Nanomech. Sci. Technol., 7, No. 4, 297–304 (2016). V. A. Eremeyev, A. Skrzat, and F. Stachowicz, “On FEM evaluation of stress concentration in micropolar elastic materials,” Nanomech. Sci. Technol., 7, No. 4, 297–304 (2016).
37.
Zurück zum Zitat E. Cosserat and F. Cosserat, Théorie des Corps Déformables, Herman et Fils, Paris (1909). E. Cosserat and F. Cosserat, Théorie des Corps Déformables, Herman et Fils, Paris (1909).
38.
Zurück zum Zitat A. C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer Science&Business Media, New York (1999).CrossRef A. C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer Science&Business Media, New York (1999).CrossRef
39.
Zurück zum Zitat V. A. Eremeyev, L. P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics, Springer Science&Business Media, Berlin (2013).CrossRef V. A. Eremeyev, L. P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics, Springer Science&Business Media, Berlin (2013).CrossRef
40.
Zurück zum Zitat W. Pietraszkiewicz and V. A. W Eremeyev, “On natural strain measures of the non-linear micropolar continuum,” Int. J. Solids Struct., 46, No. 3, 774–787 (2009).CrossRef W. Pietraszkiewicz and V. A. W Eremeyev, “On natural strain measures of the non-linear micropolar continuum,” Int. J. Solids Struct., 46, No. 3, 774–787 (2009).CrossRef
41.
Zurück zum Zitat W. Pietraszkiewicz and V. A. Eremeyev, “On vectorially parameterized natural strain measures of the non-linear Cosserat continuum,” Int. J. Solids Struct., 46, No. 11, 2477–2480 (2009).CrossRef W. Pietraszkiewicz and V. A. Eremeyev, “On vectorially parameterized natural strain measures of the non-linear Cosserat continuum,” Int. J. Solids Struct., 46, No. 11, 2477–2480 (2009).CrossRef
42.
Zurück zum Zitat V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry group of the non-linear polar-elastic continuum,” Int. J. Solids Struct., 49, No. 14, 1993–2005 (2012).CrossRef V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry group of the non-linear polar-elastic continuum,” Int. J. Solids Struct., 49, No. 14, 1993–2005 (2012).CrossRef
43.
Zurück zum Zitat V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry group and constitutive equations of micropolar anisotropic elastic solids,” Math. Mech. Solids, 21, No. 2, 210–221 (2016).CrossRef V. A. Eremeyev and W. Pietraszkiewicz, “Material symmetry group and constitutive equations of micropolar anisotropic elastic solids,” Math. Mech. Solids, 21, No. 2, 210–221 (2016).CrossRef
Metadaten
Titel
Linear Micropolar Elasticity Analysis of Stresses in Bones Under Static Loads
verfasst von
V. A. Eremeyev
A. Skrzat
F. Stachowicz
Publikationsdatum
15.11.2017
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 4/2017
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-017-9901-5

Weitere Artikel der Ausgabe 4/2017

Strength of Materials 4/2017 Zur Ausgabe

Acknowledgments

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.