Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2015 | Regular Article | Ausgabe 1/2015

Advances in Data Analysis and Classification 1/2015

Linear regression for numeric symbolic variables: a least squares approach based on Wasserstein Distance

Zeitschrift:
Advances in Data Analysis and Classification > Ausgabe 1/2015
Autoren:
Antonio Irpino, Rosanna Verde
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11634-015-0197-7) contains supplementary material, which is available to authorized users.

Abstract

In this paper we present a new linear regression technique for distributional symbolic variables, i.e., variables whose realizations can be histograms, empirical distributions or empirical estimates of parametric distributions. Such data are known as numerical modal data according to the Symbolic Data Analysis definitions. In order to measure the error between the observed and the predicted distributions, the \(\ell _2\) Wasserstein distance is proposed. Some properties of such a metric are exploited to predict the modal response variable as a linear combination of the explanatory modal variables. Based on the metric, the model uses the quantile functions associated with the data and thus is subject to a positivity constraint of the estimated parameters. We propose solving the linear regression problem by starting from a particular decomposition of the squared distance. Therefore, we estimate the model parameters according to two separate models, one for the averages of the data and one for the centered distributions by a constrained least squares algorithm. Measures of goodness-of-fit are also proposed and discussed. The method is validated by two applications, one on simulated data and one on two real-world datasets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

Advances in Data Analysis and Classification 1/2015 Zur Ausgabe

Premium Partner

    Bildnachweise