Skip to main content
Erschienen in: Journal of Scientific Computing 1/2019

22.03.2019

Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction

verfasst von: Dongfang Li, Chengda Wu, Zhimin Zhang

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A Newton linearized Galerkin finite element method is proposed to solve nonlinear time fractional parabolic problems with non-smooth solutions in time direction. Iterative processes or corrected schemes become dispensable by the use of the Newton linearized method and graded meshes in the temporal direction. The optimal error estimate in the \(L^2\)-norm is obtained without any time step restrictions dependent on the spatial mesh size. Such unconditional convergence results are proved by including the initial time singularity into concern, while previous unconditional convergent results always require continuity and boundedness of the temporal derivative of the exact solution. Numerical experiments are conducted to confirm the theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agarwal, P.R., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)CrossRefMATH Agarwal, P.R., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)CrossRefMATH
2.
Zurück zum Zitat Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef
3.
Zurück zum Zitat Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45, 417–437 (1985)MathSciNetCrossRefMATH Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45, 417–437 (1985)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRefMATH Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)MathSciNetCrossRefMATH Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)MathSciNetCrossRefMATH Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations. Appl. Math. Lett. 84, 160–167 (2018)MathSciNetCrossRefMATH Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations. Appl. Math. Lett. 84, 160–167 (2018)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Chen, Y., Wu, L.: Second Order Elliptic Equations and Elliptic Systems, Translations of Mathematical Monographs 174. AMS, USA (1998) Chen, Y., Wu, L.: Second Order Elliptic Equations and Elliptic Systems, Translations of Mathematical Monographs 174. AMS, USA (1998)
9.
Zurück zum Zitat Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)MathSciNetCrossRefMATH Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Hou, D., Hasan, M.T., Xu, X.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18, 43–62 (2018)MathSciNetCrossRefMATH Hou, D., Hasan, M.T., Xu, X.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18, 43–62 (2018)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM. J. Sci. Comput. 39, A3129–A3152 (2017)MathSciNetCrossRefMATH Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM. J. Sci. Comput. 39, A3129–A3152 (2017)MathSciNetCrossRefMATH
12.
13.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
14.
Zurück zum Zitat Le, K.N., Mclean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM. J. Numer. Anal. 54, 1763–1784 (2016)MathSciNetCrossRefMATH Le, K.N., Mclean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM. J. Numer. Anal. 54, 1763–1784 (2016)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimate of a Crank–Nicolson Galerkin method for nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)MathSciNetCrossRefMATH Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimate of a Crank–Nicolson Galerkin method for nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)MathSciNetMATH Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)MathSciNetMATH
17.
Zurück zum Zitat Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)MathSciNetCrossRefMATH Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)MathSciNet Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)MathSciNet
19.
Zurück zum Zitat Li, D., Wang, J.: Unconditionally optimal error analysis of Crank–Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892–915 (2017)MathSciNetCrossRefMATH Li, D., Wang, J.: Unconditionally optimal error analysis of Crank–Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892–915 (2017)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)CrossRefMATH Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)CrossRefMATH
21.
Zurück zum Zitat Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)MathSciNetCrossRefMATH Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Li, H., Wu, X., Zhang, J.: Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space. East Asia J. Appl. Math. 7, 439–454 (2017)MathSciNetCrossRefMATH Li, H., Wu, X., Zhang, J.: Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space. East Asia J. Appl. Math. 7, 439–454 (2017)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRefMATH Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)MATH Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)MATH
26.
Zurück zum Zitat Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130, 497–516 (2015)MathSciNetCrossRefMATH Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130, 497–516 (2015)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analysis. Math. Comput. 87, 2259–2272 (2018)CrossRefMATH Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analysis. Math. Comput. 87, 2259–2272 (2018)CrossRefMATH
28.
Zurück zum Zitat Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA. J. Numer. Anal. 30, 555–578 (2010)MathSciNetCrossRefMATH Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA. J. Numer. Anal. 30, 555–578 (2010)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRefMATH Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Shen, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion. Numer. Math. Theor. Methods Appl. 11, 854–876 (2018)MathSciNetCrossRef Shen, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion. Numer. Math. Theor. Methods Appl. 11, 854–876 (2018)MathSciNetCrossRef
31.
Zurück zum Zitat Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016)MathSciNetCrossRefMATH Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Stynes, M., Gracia, J.L.: Preprocessing schemes for fractional-derivative problems to improve their convergence rates. Appl. Math. Lett. 74, 187–192 (2017)MathSciNetCrossRefMATH Stynes, M., Gracia, J.L.: Preprocessing schemes for fractional-derivative problems to improve their convergence rates. Appl. Math. Lett. 74, 187–192 (2017)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)CrossRefMATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)CrossRefMATH
35.
Zurück zum Zitat Wu, C., Sun, W.: Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg–Landau equations under temporal gauge. SIAM. J. Numer. Anal. 56, 1291–1312 (2018)MathSciNetCrossRefMATH Wu, C., Sun, W.: Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg–Landau equations under temporal gauge. SIAM. J. Numer. Anal. 56, 1291–1312 (2018)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)MathSciNetCrossRefMATH Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM. J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRefMATH Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM. J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction–subdiffusion process. Phys. Rev. E. 69, 036126 (2004)CrossRef Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction–subdiffusion process. Phys. Rev. E. 69, 036126 (2004)CrossRef
39.
Zurück zum Zitat Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for time fractional diffusion equations on no-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRefMATH Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for time fractional diffusion equations on no-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Zhou, X., Xu, C.: Well-posedness of a kind of nonlinear coupled system of fractional differential equations. Sci. China Math. 59, 1209–1220 (2016)MathSciNetCrossRefMATH Zhou, X., Xu, C.: Well-posedness of a kind of nonlinear coupled system of fractional differential equations. Sci. China Math. 59, 1209–1220 (2016)MathSciNetCrossRefMATH
Metadaten
Titel
Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction
verfasst von
Dongfang Li
Chengda Wu
Zhimin Zhang
Publikationsdatum
22.03.2019
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00943-0

Weitere Artikel der Ausgabe 1/2019

Journal of Scientific Computing 1/2019 Zur Ausgabe