Skip to main content
Erschienen in: Designs, Codes and Cryptography 2/2017

18.11.2016

Linearly embeddable designs

verfasst von: Vladimir D. Tonchev

Erschienen in: Designs, Codes and Cryptography | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A residual design \(\mathcal{{D}}_B\) with respect to a block B of a given design \({\mathcal{{D}}}\) is defined to be linearly embeddable over GF(p) if the p-ranks of the incidence matrices of \({\mathcal{{D}}}_B\) and \({\mathcal{{D}}}\) differ by one. A sufficient condition for a residual design to be linearly embeddable is proved in terms of the minimum distance of the linear code spanned by the incidence matrix, and this condition is used to show that the residual designs of several known infinite classes of designs are linearly embeddable. A necessary condition for linear embeddability is proved for affine resolvable designs and their residual designs. As an application, it is shown that a residual design of the classical affine design of the planes in AG \((3,2^2)\) admits two nonisomorphic embeddings over GF(2) that give rise to the only known counterexamples to Hamada’s conjecture over a field of non-prime order.
Literatur
1.
Zurück zum Zitat Assmus Jr. E.F., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992).CrossRefMATH Assmus Jr. E.F., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992).CrossRefMATH
2.
Zurück zum Zitat Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).CrossRefMATH Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).CrossRefMATH
3.
Zurück zum Zitat Blake I.F., Mullin R.C.: An Introduction to Algebraic and Combinatorial Coding Theory. Academic Press, New York (1976).MATH Blake I.F., Mullin R.C.: An Introduction to Algebraic and Combinatorial Coding Theory. Academic Press, New York (1976).MATH
4.
Zurück zum Zitat Bose R.C.: Graphs and Designs. Edizioni Cremonese, Rome (1973).MATH Bose R.C.: Graphs and Designs. Edizioni Cremonese, Rome (1973).MATH
5.
Zurück zum Zitat Clark D., Jungnickel D., Tonchev V.D.: Affine geometry designs, polarities, and Hamada’s conjecture. J. Comb. Theory Ser. A 118, 231–239 (2011).MathSciNetCrossRefMATH Clark D., Jungnickel D., Tonchev V.D.: Affine geometry designs, polarities, and Hamada’s conjecture. J. Comb. Theory Ser. A 118, 231–239 (2011).MathSciNetCrossRefMATH
6.
Zurück zum Zitat Dillon J.F., Schatz J.R.: Block designs with the symmetric difference property. In: Ward R.L. (ed.) Proceedings of the NSA Mathematical Sciences Meetings, pp. 159–164. U.S. Government Printing Office, Washington, D.C. (1987). Dillon J.F., Schatz J.R.: Block designs with the symmetric difference property. In: Ward R.L. (ed.) Proceedings of the NSA Mathematical Sciences Meetings, pp. 159–164. U.S. Government Printing Office, Washington, D.C. (1987).
7.
Zurück zum Zitat Hall Jr. M.: Combinatorial Theory. Wiley, New York (1986).MATH Hall Jr. M.: Combinatorial Theory. Wiley, New York (1986).MATH
8.
Zurück zum Zitat Hamada N.: On the \(p\)-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error-correcting codes. Hiroshima Math. J. 3, 153–226 (1973).MathSciNetMATH Hamada N.: On the \(p\)-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error-correcting codes. Hiroshima Math. J. 3, 153–226 (1973).MathSciNetMATH
9.
Zurück zum Zitat Hamada N.: On the geometric structure and \(p\)-rank of affine triple system derived from a nonassociative Moufang loop with the maximum associative center. J. Comb. Theory A 30, 285–297 (1981).MathSciNetCrossRefMATH Hamada N.: On the geometric structure and \(p\)-rank of affine triple system derived from a nonassociative Moufang loop with the maximum associative center. J. Comb. Theory A 30, 285–297 (1981).MathSciNetCrossRefMATH
10.
Zurück zum Zitat Harada M., Lam C., Tonchev V.D.: Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4. Des. Codes Cryptogr. 34, 71–87 (2005).MathSciNetCrossRefMATH Harada M., Lam C., Tonchev V.D.: Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4. Des. Codes Cryptogr. 34, 71–87 (2005).MathSciNetCrossRefMATH
11.
Zurück zum Zitat Helgert H.J., Stinaff R.D.: Minimum distance bounds for binary linear codes. IEEE Trans. Inf. Theory IT–19, 344–356 (1973).MathSciNetCrossRefMATH Helgert H.J., Stinaff R.D.: Minimum distance bounds for binary linear codes. IEEE Trans. Inf. Theory IT–19, 344–356 (1973).MathSciNetCrossRefMATH
13.
Zurück zum Zitat Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefMATH Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefMATH
14.
Zurück zum Zitat Ionin Y.J., Shrikhande M.S.: Combinatorics of Symmetric Designs. Cambridge University Press, Cambridge (2006).CrossRefMATH Ionin Y.J., Shrikhande M.S.: Combinatorics of Symmetric Designs. Cambridge University Press, Cambridge (2006).CrossRefMATH
15.
16.
Zurück zum Zitat Jungnickel D., Tonchev V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51, 131–140 (2009).MathSciNetCrossRefMATH Jungnickel D., Tonchev V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51, 131–140 (2009).MathSciNetCrossRefMATH
17.
Zurück zum Zitat Jungnickel D., Tonchev V.D.: Exponential number of quasi-symmetric SDP designs and codes meeting the Grey–Rankin bound. Des. Codes Cryptogr. 1, 247–253 (1991).MathSciNetCrossRefMATH Jungnickel D., Tonchev V.D.: Exponential number of quasi-symmetric SDP designs and codes meeting the Grey–Rankin bound. Des. Codes Cryptogr. 1, 247–253 (1991).MathSciNetCrossRefMATH
20.
Zurück zum Zitat Kantor W.M.: Exponential numbers of two-weight codes, difference sets and symmetric designs. Discret. Math. 46, 95–98 (1983).MathSciNetCrossRefMATH Kantor W.M.: Exponential numbers of two-weight codes, difference sets and symmetric designs. Discret. Math. 46, 95–98 (1983).MathSciNetCrossRefMATH
22.
Zurück zum Zitat Lam C., Lam S., Tonchev V.D.: Bounds on the number of affine, symmetric, and Hadamard designs and matrices. J. Comb. Theory Ser. A 92, 186–196 (2000).MathSciNetCrossRefMATH Lam C., Lam S., Tonchev V.D.: Bounds on the number of affine, symmetric, and Hadamard designs and matrices. J. Comb. Theory Ser. A 92, 186–196 (2000).MathSciNetCrossRefMATH
24.
Zurück zum Zitat Mavron V.C., McDonough T.P., Tonchev V.D.: On affine designs and Hadamard designs with line spreads. Discret. Math. 308, 2742–2750 (2008).MathSciNetCrossRefMATH Mavron V.C., McDonough T.P., Tonchev V.D.: On affine designs and Hadamard designs with line spreads. Discret. Math. 308, 2742–2750 (2008).MathSciNetCrossRefMATH
25.
Zurück zum Zitat Rudolph L.D.: A class of majority-logic decodable codes. IEEE Trans. Inf. Theory 13, 305–307 (1967).CrossRefMATH Rudolph L.D.: A class of majority-logic decodable codes. IEEE Trans. Inf. Theory 13, 305–307 (1967).CrossRefMATH
26.
Zurück zum Zitat Shrikhande M.S.: Quasi-symmetric designs. In: Colbourn C.J., Dinitz J.F. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 578–582. Chapman & Hall/CRC, Boca Raton (2007). Shrikhande M.S.: Quasi-symmetric designs. In: Colbourn C.J., Dinitz J.F. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 578–582. Chapman & Hall/CRC, Boca Raton (2007).
27.
Zurück zum Zitat Shrikhande S.S.: On the non-existence of affine resolvable balanced incomplete block designs. Sankhya 11, 185–186 (1951).MathSciNetMATH Shrikhande S.S.: On the non-existence of affine resolvable balanced incomplete block designs. Sankhya 11, 185–186 (1951).MathSciNetMATH
28.
Zurück zum Zitat Tonchev V.D.: Quasi-symmetric 2-(31,7,7) designs and a revision of Hamada’s conjecture. J. Comb. Theory A 42, 104–110 (1986).CrossRefMATH Tonchev V.D.: Quasi-symmetric 2-(31,7,7) designs and a revision of Hamada’s conjecture. J. Comb. Theory A 42, 104–110 (1986).CrossRefMATH
29.
Zurück zum Zitat Tonchev V.D.: Combinatorial Configurations. Wiley, New York (1988).MATH Tonchev V.D.: Combinatorial Configurations. Wiley, New York (1988).MATH
30.
31.
Zurück zum Zitat Tonchev V.D.: Codes and designs, Chapter 15. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1229–1268. Elsevier, New York (1998). Tonchev V.D.: Codes and designs, Chapter 15. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1229–1268. Elsevier, New York (1998).
32.
Zurück zum Zitat Tonchev V.D.: Codes. In: Colbourn C.J., Dinitz J.F. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 667–702. Chapman & Hall/CRC, Boca Raton (2007). Tonchev V.D.: Codes. In: Colbourn C.J., Dinitz J.F. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 667–702. Chapman & Hall/CRC, Boca Raton (2007).
Metadaten
Titel
Linearly embeddable designs
verfasst von
Vladimir D. Tonchev
Publikationsdatum
18.11.2016
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 2/2017
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0304-6

Weitere Artikel der Ausgabe 2/2017

Designs, Codes and Cryptography 2/2017 Zur Ausgabe