Skip to main content

2017 | OriginalPaper | Buchkapitel

Detection of the Incoming Sound Direction Employing MEMS Microphones and the DSP

verfasst von : Grzegorz Szwoch, Józef Kotus

Erschienen in: Multimedia Communications, Services and Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A 3D acoustic vector sensor based on MEMS microphones and its application to road traffic monitoring is presented in the paper. The sensor is constructed from three pairs of digital MEMS microphones, mounted on the orthogonal axes. Signals obtained from the microphones are used to compute sound intensity vectors in each direction. With this data, it is possible to compute the horizontal and vertical angle of an incoming sound. The algorithm was implemented on a low-cost, fixed point TMS320C5535 digital signal processor. The microphone signals are acquired via I2S buses, then the algorithm computes the acoustic pressure, particle velocity and sound intensity components, which are then used to calculate the azimuth and elevation of a sound source. The detection results are exposed via the USB interface. The intensity values are computed in overlapping frames in order to improve the signal-to-noise ratio. In the experimental setup, readouts with a frequency of c.a. 70 Hz, frequency range up to c.a. 9 kHz and the angular resolution of 1 degree, were obtained. Validation of the sensor was performed in an anechoic chamber using a test source with known direction. A comparison of the tested system with a commercial sound intensity probe was also made. Additionally, some preliminary tests in real world conditions were also performed. The obtained results prove that the proposed sensor and the algorithm provide high accuracy of detection of the incoming sound direction, comparable to a commercial device. Therefore, the sensor and the DSP algorithm form a low-cost system that may be used e.g. for acoustic monitoring of traffic.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cao, J., Liu, J., Wang, J., Lai, X.: Acoustic vector sensor: reviews and future perspectives. IET Sig. Process. 11, 1–9 (2017)CrossRef Cao, J., Liu, J., Wang, J., Lai, X.: Acoustic vector sensor: reviews and future perspectives. IET Sig. Process. 11, 1–9 (2017)CrossRef
2.
Zurück zum Zitat Nehorai, A., Paldi, E.: Acoustic vector-sensor array processing. IEEE Trans. Sig. Process. 42, 2481–2491 (1994)CrossRef Nehorai, A., Paldi, E.: Acoustic vector-sensor array processing. IEEE Trans. Sig. Process. 42, 2481–2491 (1994)CrossRef
3.
Zurück zum Zitat Hawkes, M., Nehorai, A.: Acoustic vector-sensor beamforming and capon direction estimation. IEEE Trans. Sig. Process. 46, 2291–2304 (1998)CrossRef Hawkes, M., Nehorai, A.: Acoustic vector-sensor beamforming and capon direction estimation. IEEE Trans. Sig. Process. 46, 2291–2304 (1998)CrossRef
4.
Zurück zum Zitat Shujau, M., Ritz, C., Burnett, I.: Using in-air acoustic vector sensors for tracking moving speakers. In: Proceeding of 4th International Conference on Signal Processing Communication System, pp. 1–5 (2010) Shujau, M., Ritz, C., Burnett, I.: Using in-air acoustic vector sensors for tracking moving speakers. In: Proceeding of 4th International Conference on Signal Processing Communication System, pp. 1–5 (2010)
5.
Zurück zum Zitat Zhong, X., Premkumar, A.: Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor. IEEE Trans. Sig. Process. 60, 4719–4733 (2012)CrossRefMathSciNet Zhong, X., Premkumar, A.: Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor. IEEE Trans. Sig. Process. 60, 4719–4733 (2012)CrossRefMathSciNet
6.
Zurück zum Zitat Awad, M., Wong, K.: Recursive least-squares source tracking using one acoustic vector sensor. IEEE Trans. Aero. Electr. Syst. 48, 3073–3083 (2012)CrossRef Awad, M., Wong, K.: Recursive least-squares source tracking using one acoustic vector sensor. IEEE Trans. Aero. Electr. Syst. 48, 3073–3083 (2012)CrossRef
7.
Zurück zum Zitat Wenzhao, Z., Shengguo, S., Zhongrui, Z., Jinwei, S.: Detection of number of source and DOA estimation in phase-mode space using uniform circular acoustic vector sensor array. In: 6th International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), pp. 361–365 (2016) Wenzhao, Z., Shengguo, S., Zhongrui, Z., Jinwei, S.: Detection of number of source and DOA estimation in phase-mode space using uniform circular acoustic vector sensor array. In: 6th International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), pp. 361–365 (2016)
8.
Zurück zum Zitat Agarwal, A., Kumar, A., Agrawal, M., Fauziya, F.: Higher order statistics based Direction of Arrival estimation with single Acoustic Vector Sensor in the under-determined case. In: OCEANS 2016 MTS/IEEE, Monterey, pp. 1–9 (2016) Agarwal, A., Kumar, A., Agrawal, M., Fauziya, F.: Higher order statistics based Direction of Arrival estimation with single Acoustic Vector Sensor in the under-determined case. In: OCEANS 2016 MTS/IEEE, Monterey, pp. 1–9 (2016)
9.
Zurück zum Zitat Nagesha, P.V., Anand, G.V., Gurugopinath, S., Prabhakar, A.: Underwater acoustic source localization by vector sensor array using compressive sampling. In: OCEANS 2016 MTS/IEEE, Monterey, pp. 1–7 (2016) Nagesha, P.V., Anand, G.V., Gurugopinath, S., Prabhakar, A.: Underwater acoustic source localization by vector sensor array using compressive sampling. In: OCEANS 2016 MTS/IEEE, Monterey, pp. 1–7 (2016)
10.
Zurück zum Zitat Kotus, J.: Multiple sound sources localization in free field using acoustic vector sensor. Multimed. Tools Appl. 74, 4235–4251 (2015)CrossRef Kotus, J.: Multiple sound sources localization in free field using acoustic vector sensor. Multimed. Tools Appl. 74, 4235–4251 (2015)CrossRef
11.
Zurück zum Zitat Łopatka, K., Kotus, J., Czyżewski, A.: Detection, classification and localization of acoustic events in the presence of background noise for acoustic surveillance of hazardous situations. Multimed. Tools Appl. 75, 10407–10439 (2016)CrossRef Łopatka, K., Kotus, J., Czyżewski, A.: Detection, classification and localization of acoustic events in the presence of background noise for acoustic surveillance of hazardous situations. Multimed. Tools Appl. 75, 10407–10439 (2016)CrossRef
12.
Zurück zum Zitat Kotus, J., Czyzewski, A., Kostek, B.: 3D acoustic field intensity probe design and measurements. Archiv. Acoust. 41, 701–711 (2016)CrossRef Kotus, J., Czyzewski, A., Kostek, B.: 3D acoustic field intensity probe design and measurements. Archiv. Acoust. 41, 701–711 (2016)CrossRef
13.
Zurück zum Zitat Jacobsen, F.: Sound intensity and its measurements and applications. Curr. Top. Acoust. Res. 3, 87–91 (2003) Jacobsen, F.: Sound intensity and its measurements and applications. Curr. Top. Acoust. Res. 3, 87–91 (2003)
14.
Zurück zum Zitat Kotus, J., Szwoch, G., Czyzewski, A.: Sound intensity probe with correction system and calibration system and the method of correction and calibration of this probe. Patent pending, PL, p. 422287, 20 Aug 2017. (in Polish) Kotus, J., Szwoch, G., Czyzewski, A.: Sound intensity probe with correction system and calibration system and the method of correction and calibration of this probe. Patent pending, PL, p. 422287, 20 Aug 2017. (in Polish)
20.
Zurück zum Zitat de Bree, H.E.: The microflown: an acoustic particle velocity sensor. Acoust. Aust. 31, 91–94 (2003) de Bree, H.E.: The microflown: an acoustic particle velocity sensor. Acoust. Aust. 31, 91–94 (2003)
Metadaten
Titel
Detection of the Incoming Sound Direction Employing MEMS Microphones and the DSP
verfasst von
Grzegorz Szwoch
Józef Kotus
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-69911-0_15