Skip to main content

2017 | OriginalPaper | Buchkapitel

ALADIN: A New Approach for Drug–Target Interaction Prediction

verfasst von : Krisztian Buza, Ladislav Peska

Erschienen in: Machine Learning and Knowledge Discovery in Databases

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to its pharmaceutical applications, one of the most prominent machine learning challenges in bioinformatics is the prediction of drug–target interactions. State-of-the-art approaches are based on various techniques, such as matrix factorization, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we extend BLM by the incorporation of a hubness-aware regression technique coupled with an enhanced representation of drugs and targets in a multi-modal similarity space. Additionally, we propose to build a projection-based ensemble. Our https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-71246-8_20/457129_1_En_20_IEq1_HTML.gif technique (ALADIN) is evaluated on publicly available real-world drug–target interaction datasets. The results show that our approach statistically significantly outperforms BLM-NII, a recent version of BLM, as well as NetLapRLS and WNN-GIP.
Code related to this chapter is available at: https://​github.​com/​lpeska/​ALADIN
Data related to this chapter are available at: https://​zenodo.​org/​record/​556337#.​WPiAzIVOIdV
Supplementary material is available at: http://​www.​biointelligence.​hu/​dti/​

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
3
In our initial experiments, we observed that increasing the number of base models results in asymptotically increasing performance. For example, we obtained AUPR of 0.835, 0.867 and 0.871 with 5, 25 and 100 base models on the Ion Channel dataset. We made similar observations on the other datasets both in terms of AUC and AUPR. Therefore, using \(N=25\) base models seems to be a fair compromise between runtime and prediction quality.
 
4
\(\beta =\beta _{drug}=\beta _{target}\) and \(\gamma =\gamma _{drug}=\gamma _{target}\).
 
8
These results are in accordance with our further observations: considering the input data of the local models, the skewness of the distribution of bad k-nearest neighbor occurrences (with \(k=3\)), which is often used to quantify the presence of bad hubs [33], is remarkably high, between 1.61 and 11.13.
 
Literatur
1.
Zurück zum Zitat Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)CrossRef Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)CrossRef
2.
3.
Zurück zum Zitat Biau, G., Cérou, F., Guyader, A.: On the rate of convergence of the bagged nearest neighbor estimate. J. Mach. Learn. Res. 11, 687–712 (2010)MathSciNetMATH Biau, G., Cérou, F., Guyader, A.: On the rate of convergence of the bagged nearest neighbor estimate. J. Mach. Learn. Res. 11, 687–712 (2010)MathSciNetMATH
4.
Zurück zum Zitat Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)CrossRef Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)CrossRef
5.
Zurück zum Zitat Bolgar, B., Antal, P.: Bayesian matrix factorization with non-random missing data using informative Gaussian process priors and soft evidences. J. Mach. Learn. Res. 52, 25–36 (2016) Bolgar, B., Antal, P.: Bayesian matrix factorization with non-random missing data using informative Gaussian process priors and soft evidences. J. Mach. Learn. Res. 52, 25–36 (2016)
6.
Zurück zum Zitat Buza, K., Nanopoulos, A., Nagy, G.: Nearest neighbor regression in the presence of bad hubs. Knowl.-Based Syst. 86, 250–260 (2015)CrossRef Buza, K., Nanopoulos, A., Nagy, G.: Nearest neighbor regression in the presence of bad hubs. Knowl.-Based Syst. 86, 250–260 (2015)CrossRef
8.
Zurück zum Zitat Chen, X., Liu, M.X., Yan, G.Y.: Drug-target interaction prediction by random walk on the heterogeneous network. Mol. BioSyst. 8(7), 1970–1978 (2012)CrossRef Chen, X., Liu, M.X., Yan, G.Y.: Drug-target interaction prediction by random walk on the heterogeneous network. Mol. BioSyst. 8(7), 1970–1978 (2012)CrossRef
9.
Zurück zum Zitat Cheng, A.C., Coleman, R.G., Smyth, K.T., Cao, Q., Soulard, P., Caffrey, D.R., Salzberg, A.C., Huang, E.S.: Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol. 25(1), 71–75 (2007)CrossRef Cheng, A.C., Coleman, R.G., Smyth, K.T., Cao, Q., Soulard, P., Caffrey, D.R., Salzberg, A.C., Huang, E.S.: Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol. 25(1), 71–75 (2007)CrossRef
10.
Zurück zum Zitat Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J., Tang, Y.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)CrossRef Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J., Tang, Y.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)CrossRef
11.
Zurück zum Zitat Davis, J., Santos Costa, V., Ray, S., Page, D.: An integrated approach to feature invention and model construction for drug activity prediction. In: Proceedings of the 24th International Conference on Machine Learning, pp. 217–224 (2007) Davis, J., Santos Costa, V., Ray, S., Page, D.: An integrated approach to feature invention and model construction for drug activity prediction. In: Proceedings of the 24th International Conference on Machine Learning, pp. 217–224 (2007)
12.
Zurück zum Zitat Davis, M.I., Hunt, J.P., Herrgard, S., Ciceri, P., Wodicka, L.M., Pallares, G., Hocker, M., Treiber, D.K., Zarrinkar, P.P.: Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29(11), 1046–1051 (2011)CrossRef Davis, M.I., Hunt, J.P., Herrgard, S., Ciceri, P., Wodicka, L.M., Pallares, G., Hocker, M., Treiber, D.K., Zarrinkar, P.P.: Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29(11), 1046–1051 (2011)CrossRef
13.
Zurück zum Zitat Fayruzov, T., De Cock, M., Cornelis, C., Hoste, V.: Linguistic feature analysis for protein interaction extraction. BMC Bioinform. 10(1), 374 (2009)CrossRef Fayruzov, T., De Cock, M., Cornelis, C., Hoste, V.: Linguistic feature analysis for protein interaction extraction. BMC Bioinform. 10(1), 374 (2009)CrossRef
14.
Zurück zum Zitat Gönen, M.: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)CrossRef Gönen, M.: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)CrossRef
15.
Zurück zum Zitat Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Struct. Func. Bioinform. 47(4), 409–443 (2002)CrossRef Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Struct. Func. Bioinform. 47(4), 409–443 (2002)CrossRef
16.
Zurück zum Zitat Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125(39), 11853–11865 (2003)CrossRef Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125(39), 11853–11865 (2003)CrossRef
17.
Zurück zum Zitat Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., Greyson, D.: The cost of drug development: a systematic review. Health Policy 100(1), 4–17 (2011)CrossRef Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., Greyson, D.: The cost of drug development: a systematic review. Health Policy 100(1), 4–17 (2011)CrossRef
18.
Zurück zum Zitat Hu, C., Jain, G., Zhang, P., Schmidt, C., Gomadam, P., Gorka, T.: Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy 129, 49–55 (2014)CrossRef Hu, C., Jain, G., Zhang, P., Schmidt, C., Gomadam, P., Gorka, T.: Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy 129, 49–55 (2014)CrossRef
19.
Zurück zum Zitat Jamali, A.A., Ferdousi, R., Razzaghi, S., Li, J., Safdari, R., Ebrahimie, E.: Drugminer: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov. Today 21(5), 718–724 (2016)CrossRef Jamali, A.A., Ferdousi, R., Razzaghi, S., Li, J., Safdari, R., Ebrahimie, E.: Drugminer: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov. Today 21(5), 718–724 (2016)CrossRef
21.
Zurück zum Zitat Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J., Shoichet, B.K.: Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25(2), 197–206 (2007)CrossRef Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J., Shoichet, B.K.: Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25(2), 197–206 (2007)CrossRef
22.
Zurück zum Zitat van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21), 3036–3043 (2011)CrossRef van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21), 3036–3043 (2011)CrossRef
23.
Zurück zum Zitat Mei, J.P., Kwoh, C.K., Yang, P., Li, X.L., Zheng, J.: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)CrossRef Mei, J.P., Kwoh, C.K., Yang, P., Li, X.L., Zheng, J.: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)CrossRef
24.
Zurück zum Zitat Pahikkala, T., Airola, A., Pietilä, S., Shakyawar, S., Szwajda, A., Tang, J., Aittokallio, T.: Toward more realistic drug-target interaction predictions. Briefings Bioinform. 16(2), 325–337 (2015)CrossRef Pahikkala, T., Airola, A., Pietilä, S., Shakyawar, S., Szwajda, A., Tang, J., Aittokallio, T.: Toward more realistic drug-target interaction predictions. Briefings Bioinform. 16(2), 325–337 (2015)CrossRef
25.
Zurück zum Zitat Pérot, S., Regad, L., Reynès, C., Spérandio, O., Miteva, M.A., Villoutreix, B.O., Camproux, A.C.: Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction. PloS One 8(6), e63730 (2013)CrossRef Pérot, S., Regad, L., Reynès, C., Spérandio, O., Miteva, M.A., Villoutreix, B.O., Camproux, A.C.: Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction. PloS One 8(6), e63730 (2013)CrossRef
27.
Zurück zum Zitat Pilászy, I., Tikk, D.: Recommending new movies: even a few ratings are more valuable than metadata. In: 3rd ACM Conference on Recommender Systems, pp. 93–100 (2009) Pilászy, I., Tikk, D.: Recommending new movies: even a few ratings are more valuable than metadata. In: 3rd ACM Conference on Recommender Systems, pp. 93–100 (2009)
28.
Zurück zum Zitat Plantevit, M., Charnois, T., Klema, J., Rigotti, C., Crémilleux, B.: Combining sequence and itemset mining to discover named entities in biomedical texts: a new type of pattern. Int. J. Data Min. Model. Manag. 1(2), 119–148 (2009)MATH Plantevit, M., Charnois, T., Klema, J., Rigotti, C., Crémilleux, B.: Combining sequence and itemset mining to discover named entities in biomedical texts: a new type of pattern. Int. J. Data Min. Model. Manag. 1(2), 119–148 (2009)MATH
29.
Zurück zum Zitat Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11, 2487–2531 (2010)MathSciNetMATH Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11, 2487–2531 (2010)MathSciNetMATH
30.
Zurück zum Zitat Sönströd, C., Johansson, U., Norinder, U., Boström, H.: Comprehensible models for predicting molecular interaction with heart-regulating genes. In: 7th IEEE International Conference on Machine Learning and Applications, pp. 559–564 (2008) Sönströd, C., Johansson, U., Norinder, U., Boström, H.: Comprehensible models for predicting molecular interaction with heart-regulating genes. In: 7th IEEE International Conference on Machine Learning and Applications, pp. 559–564 (2008)
31.
Zurück zum Zitat Stensbo-Smidt, K., Igel, C., Zirm, A., Pedersen, K.S.: Nearest neighbour regression outperforms model-based prediction of specific star formation rate. In: IEEE International Conference on Big Data, pp. 141–144 (2013) Stensbo-Smidt, K., Igel, C., Zirm, A., Pedersen, K.S.: Nearest neighbour regression outperforms model-based prediction of specific star formation rate. In: IEEE International Conference on Big Data, pp. 141–144 (2013)
32.
Zurück zum Zitat Stražar, M., Žitnik, M., Zupan, B., Ule, J., Curk, T.: Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics 32(10), 1527–1535 (2016)CrossRef Stražar, M., Žitnik, M., Zupan, B., Ule, J., Curk, T.: Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics 32(10), 1527–1535 (2016)CrossRef
33.
Zurück zum Zitat Tomašev, N., Buza, K., Marussy, K., Kis, P.B.: Hubness-aware classification, instance selection and feature construction: survey and extensions to time-series. In: Stańczyk, U., Jain, L.C. (eds.) Feature Selection for Data and Pattern Recognition. SCI, vol. 584, pp. 231–262. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45620-0_11 Tomašev, N., Buza, K., Marussy, K., Kis, P.B.: Hubness-aware classification, instance selection and feature construction: survey and extensions to time-series. In: Stańczyk, U., Jain, L.C. (eds.) Feature Selection for Data and Pattern Recognition. SCI, vol. 584, pp. 231–262. Springer, Heidelberg (2015). https://​doi.​org/​10.​1007/​978-3-662-45620-0_​11
34.
Zurück zum Zitat Ullrich, K., Kamp, M., Gärtner, T., Vogt, M., Wrobel, S.: Ligand-based virtual screening with co-regularised support vector regression. In: 16th IEEE International Conference on Data Mining Workshops, pp. 261–268 (2016) Ullrich, K., Kamp, M., Gärtner, T., Vogt, M., Wrobel, S.: Ligand-based virtual screening with co-regularised support vector regression. In: 16th IEEE International Conference on Data Mining Workshops, pp. 261–268 (2016)
36.
Zurück zum Zitat van Laarhoven, T., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PloS One 8(6), e66952 (2013) van Laarhoven, T., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PloS One 8(6), e66952 (2013)
37.
Zurück zum Zitat Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29(13), i126–i134 (2013)CrossRef Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29(13), i126–i134 (2013)CrossRef
38.
Zurück zum Zitat Xia, Z., Wu, L.Y., Zhou, X., Wong, S.T.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(Suppl 2), S6 (2010)CrossRef Xia, Z., Wu, L.Y., Zhou, X., Wong, S.T.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(Suppl 2), S6 (2010)CrossRef
39.
Zurück zum Zitat Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)CrossRef Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)CrossRef
40.
41.
Zurück zum Zitat Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033 (2013) Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033 (2013)
42.
Zurück zum Zitat Zhu, S., Okuno, Y., Tsujimoto, G., Mamitsuka, H.: A probabilistic model for mining implicit chemical compound-gene relations from literature. Bioinformatics 21(Suppl. 2), ii245–ii251 (2005) Zhu, S., Okuno, Y., Tsujimoto, G., Mamitsuka, H.: A probabilistic model for mining implicit chemical compound-gene relations from literature. Bioinformatics 21(Suppl. 2), ii245–ii251 (2005)
Metadaten
Titel
ALADIN: A New Approach for Drug–Target Interaction Prediction
verfasst von
Krisztian Buza
Ladislav Peska
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-71246-8_20