Skip to main content
Erschienen in: Neural Computing and Applications 9/2019

28.02.2018 | Original Article

Adaptive graph orthogonal discriminant embedding: an improved graph embedding method

verfasst von: Ming-Dong Yuan, Da-Zheng Feng, Ya Shi, Chun-Bao Xiao

Erschienen in: Neural Computing and Applications | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph embedding is a popular graph based dimensionality reduction framework, and it consists of two successive steps, i.e., graph construction and embedding. The traditional graph construction methods such as \(k\)-nearest-neighbor (k-NN) and \(\varepsilon\)-ball suffer from the difficulty in parameter selection and are also sensitive to noises. On the other hand, the property of embedding projection is not fully explored by many methods. In this paper, we explicitly investigate these two steps and propose three adaptive graph orthogonal discriminant embedding techniques (termed as AGODE-gs, AGODE-dl and AGODE-tr) for dimensionality reduction, and their differences lie in the way of orthogonalization. In our proposed methods, both the intra-class adjacency graph and the inter-class repulsion graph are constructed by a \(\ell_{2}\)-norm regularized least square, and an orthogonal constraint between the projection vectors is then imposed. The time and space complexity of the proposed methods are also analyzed in detail. We further show that the proposed methods are computationally more efficient than those \(\ell_{1}\)-norm based graph construction methods. Extensive experiments on four face databases (ORL, Yale, CUM-PIE and Extended YaleB) verify the effectiveness and efficiency of the proposed methods with encouraging results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef
2.
Zurück zum Zitat Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal 19(7):711–720CrossRef Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal 19(7):711–720CrossRef
3.
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef
4.
Zurück zum Zitat He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: IEEE international conference on computer vision. IEEE, pp 1208–1213 He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: IEEE international conference on computer vision. IEEE, pp 1208–1213
5.
Zurück zum Zitat Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRef Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRef
6.
Zurück zum Zitat He X, Niyogi P (2003) Locality preserving projections. In: Proceedings of the 16th international conference on neural information processing systems. MIT Press, pp 153–160 He X, Niyogi P (2003) Locality preserving projections. In: Proceedings of the 16th international conference on neural information processing systems. MIT Press, pp 153–160
7.
Zurück zum Zitat Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal 29(1):40–51CrossRef Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal 29(1):40–51CrossRef
8.
Zurück zum Zitat Nie F, Zeng Z, Tsang IW, Xu D, Zhang C (2011) Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw 22(11):1796–1808CrossRef Nie F, Zeng Z, Tsang IW, Xu D, Zhang C (2011) Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw 22(11):1796–1808CrossRef
10.
Zurück zum Zitat Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 2:849–856 Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 2:849–856
11.
Zurück zum Zitat He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. In: Proceedings of the 18th international conference on neural information processing systems. MIT Press, pp 507–514 He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. In: Proceedings of the 18th international conference on neural information processing systems. MIT Press, pp 507–514
12.
Zurück zum Zitat Zhao Z, Liu H (2007) Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the 24th international conference on machine learning. ACM, pp 1151–1157 Zhao Z, Liu H (2007) Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the 24th international conference on machine learning. ACM, pp 1151–1157
13.
Zurück zum Zitat Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 846–853 Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 846–853
16.
Zurück zum Zitat Jebara T, Wang J, Chang S-F (2009) Graph construction and b-matching for semi-supervised learning. In: Proceedings of the 26th annual international conference on machine learning. ACM, pp 441–448 Jebara T, Wang J, Chang S-F (2009) Graph construction and b-matching for semi-supervised learning. In: Proceedings of the 26th annual international conference on machine learning. ACM, pp 441–448
17.
Zurück zum Zitat Yang B, Chen S (2010) Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing 74(1–3):301–314CrossRef Yang B, Chen S (2010) Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing 74(1–3):301–314CrossRef
18.
Zurück zum Zitat Raducanu B, Dornaika F (2012) A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recogn 45(6):2432–2444CrossRef Raducanu B, Dornaika F (2012) A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recogn 45(6):2432–2444CrossRef
19.
Zurück zum Zitat Zhang L, Qiao L, Chen S (2010) Graph-optimized locality preserving projections. Pattern Recogn 43(6):1993–2002CrossRef Zhang L, Qiao L, Chen S (2010) Graph-optimized locality preserving projections. Pattern Recogn 43(6):1993–2002CrossRef
20.
Zurück zum Zitat Cheng B, Yang J, Yan S, Fu Y, Huang TS (2010) Learning with l1-graph for image analysis. IEEE Trans Image Process 19(4):858–866MathSciNetCrossRef Cheng B, Yang J, Yan S, Fu Y, Huang TS (2010) Learning with l1-graph for image analysis. IEEE Trans Image Process 19(4):858–866MathSciNetCrossRef
21.
Zurück zum Zitat Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341CrossRef Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341CrossRef
22.
Zurück zum Zitat Yan S, Wang H (2009) Semi-supervised learning by sparse representation. In: SDM. SIAM, pp 792–801 Yan S, Wang H (2009) Semi-supervised learning by sparse representation. In: SDM. SIAM, pp 792–801
23.
Zurück zum Zitat Raducanu B, Dornaika F (2014) Embedding new observations via sparse-coding for non-linear manifold learning. Pattern Recogn 47(1):480–492CrossRef Raducanu B, Dornaika F (2014) Embedding new observations via sparse-coding for non-linear manifold learning. Pattern Recogn 47(1):480–492CrossRef
24.
Zurück zum Zitat Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal 31(2):210–227CrossRef Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal 31(2):210–227CrossRef
26.
Zurück zum Zitat Gui J, Sun Z, Jia W, Hu R, Lei Y, Ji S (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recogn 45(8):2884–2893CrossRef Gui J, Sun Z, Jia W, Hu R, Lei Y, Ji S (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recogn 45(8):2884–2893CrossRef
29.
Zurück zum Zitat Lou S, Zhao X, Chuang Y, Yu H, Zhang S (2016) Graph regularized sparsity discriminant analysis for face recognition. Neurocomputing 173:290–297CrossRef Lou S, Zhao X, Chuang Y, Yu H, Zhang S (2016) Graph regularized sparsity discriminant analysis for face recognition. Neurocomputing 173:290–297CrossRef
30.
Zurück zum Zitat Zang F, Zhang J (2011) Discriminative learning by sparse representation for classification. Neurocomputing 74:2176–2183CrossRef Zang F, Zhang J (2011) Discriminative learning by sparse representation for classification. Neurocomputing 74:2176–2183CrossRef
32.
Zurück zum Zitat Zhang L, Yang M, Feng X, Ma Y, Zhang D (2012) Collaborative representation based classification for face recognition. arXiv preprint arXiv:12042358 Zhang L, Yang M, Feng X, Ma Y, Zhang D (2012) Collaborative representation based classification for face recognition. arXiv preprint arXiv:​12042358
33.
Zurück zum Zitat Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: IEEE international conference on computer vision (ICCV). IEEE, pp 471–478 Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: IEEE international conference on computer vision (ICCV). IEEE, pp 471–478
34.
Zurück zum Zitat Shi Q, Eriksson A, Van Den Hengel A, Shen C (2011) Is face recognition really a compressive sensing problem? In: IEEE conference on computer vision and pattern recognition. IEEE, pp 553–560 Shi Q, Eriksson A, Van Den Hengel A, Shen C (2011) Is face recognition really a compressive sensing problem? In: IEEE conference on computer vision and pattern recognition. IEEE, pp 553–560
36.
Zurück zum Zitat Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27CrossRef Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27CrossRef
37.
Zurück zum Zitat Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal 29(12):2143–2156CrossRef Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal 29(12):2143–2156CrossRef
38.
Zurück zum Zitat Lei Y-K, Zou J-W, Dong T, You Z-H, Yuan Y, Hu Y (2014) Orthogonal locally discriminant spline embedding for plant leaf recognition. Comput Vis Image Underst 119:116–126CrossRef Lei Y-K, Zou J-W, Dong T, You Z-H, Yuan Y, Hu Y (2014) Orthogonal locally discriminant spline embedding for plant leaf recognition. Comput Vis Image Underst 119:116–126CrossRef
39.
Zurück zum Zitat Cai D, He X, Han J, Zhang H-J (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614CrossRef Cai D, He X, Han J, Zhang H-J (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614CrossRef
40.
Zurück zum Zitat Zheng Y, Fang B, Tang YY, Zhang T, Liu R (2013) Learning orthogonal projections for Isomap. Neurocomputing 103:149–154CrossRef Zheng Y, Fang B, Tang YY, Zhang T, Liu R (2013) Learning orthogonal projections for Isomap. Neurocomputing 103:149–154CrossRef
41.
Zurück zum Zitat Gao Q, Ma J, Zhang H, Gao X, Liu Y (2013) Stable orthogonal local discriminant embedding for linear dimensionality reduction. IEEE Trans Image Process 22(7):2521–2531CrossRef Gao Q, Ma J, Zhang H, Gao X, Liu Y (2013) Stable orthogonal local discriminant embedding for linear dimensionality reduction. IEEE Trans Image Process 22(7):2521–2531CrossRef
42.
Zurück zum Zitat Yu X, Wang X (2008) Uncorrelated discriminant locality preserving projections. IEEE Signal Proc Lett 15:361–364CrossRef Yu X, Wang X (2008) Uncorrelated discriminant locality preserving projections. IEEE Signal Proc Lett 15:361–364CrossRef
43.
Zurück zum Zitat Jin Z, Yang J-Y, Hu Z-S, Lou Z (2001) Face recognition based on the uncorrelated discriminant transformation. Pattern Recogn 34(7):1405–1416CrossRef Jin Z, Yang J-Y, Hu Z-S, Lou Z (2001) Face recognition based on the uncorrelated discriminant transformation. Pattern Recogn 34(7):1405–1416CrossRef
44.
Zurück zum Zitat Lu C-Y, Huang D-S (2013) Optimized projections for sparse representation based classification. Neurocomputing 113:213–219CrossRef Lu C-Y, Huang D-S (2013) Optimized projections for sparse representation based classification. Neurocomputing 113:213–219CrossRef
45.
Zurück zum Zitat Ye J (2005) Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J Mach Learn Res 6:483–502MathSciNetMATH Ye J (2005) Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J Mach Learn Res 6:483–502MathSciNetMATH
46.
Zurück zum Zitat Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI conference on artificial intelligence (AAAI), Austin, Texas, USA, Jan 25–29, 2015 Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI conference on artificial intelligence (AAAI), Austin, Texas, USA, Jan 25–29, 2015
47.
Zurück zum Zitat Yuan M-D, Feng D-Z, Liu W-J, Xiao C-B (2016) Collaborative representation discriminant embedding for image classification. J Vis Commun Image Represent 41:212–224CrossRef Yuan M-D, Feng D-Z, Liu W-J, Xiao C-B (2016) Collaborative representation discriminant embedding for image classification. J Vis Commun Image Represent 41:212–224CrossRef
48.
Zurück zum Zitat Golub G, Cv Loan (1989) Matrix computations, 2nd edn. Johns Hopkins University Press, London Golub G, Cv Loan (1989) Matrix computations, 2nd edn. Johns Hopkins University Press, London
49.
Zurück zum Zitat Duchene J, Leclercq S (1988) An optimal transformation for discriminant and principal component analysis. IEEE Trans Pattern Anal 10(6):978–983CrossRef Duchene J, Leclercq S (1988) An optimal transformation for discriminant and principal component analysis. IEEE Trans Pattern Anal 10(6):978–983CrossRef
52.
Zurück zum Zitat Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE workshop on applications of computer vision. IEEE, pp 138–142 Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE workshop on applications of computer vision. IEEE, pp 138–142
54.
Zurück zum Zitat Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal 25(12):1615–1618CrossRef Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal 25(12):1615–1618CrossRef
56.
Zurück zum Zitat Han PY, Jin ATB, Abas FS (2009) Neighbourhood preserving discriminant embedding in face recognition. J Vis Commun Image Represent 20(8):532–542CrossRef Han PY, Jin ATB, Abas FS (2009) Neighbourhood preserving discriminant embedding in face recognition. J Vis Commun Image Represent 20(8):532–542CrossRef
57.
Zurück zum Zitat Yang W, Sun C, Zheng W (2016) A regularized least square based discriminative projections for feature extraction. Neurocomputing 175:198–205CrossRef Yang W, Sun C, Zheng W (2016) A regularized least square based discriminative projections for feature extraction. Neurocomputing 175:198–205CrossRef
60.
Zurück zum Zitat Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: European conference on computer vision. Springer, pp 448–461 Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: European conference on computer vision. Springer, pp 448–461
Metadaten
Titel
Adaptive graph orthogonal discriminant embedding: an improved graph embedding method
verfasst von
Ming-Dong Yuan
Da-Zheng Feng
Ya Shi
Chun-Bao Xiao
Publikationsdatum
28.02.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3374-8

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Uncertainties in the friction moment of rolling bearings based on the Bayesian theory and robust theory

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

ACCP: adaptive congestion control protocol in named data networking based on deep learning