Skip to main content

2018 | OriginalPaper | Buchkapitel

19. Finite-Difference Schemes in Musical Acoustics: A Tutorial

verfasst von : Stefan Bilbao, Brian Hamilton, Reginald Harrison, Alberto Torin

Erschienen in: Springer Handbook of Systematic Musicology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The functioning of musical instruments is well described by systems of partial differential equations. Whether one's interest is in pure musical acoustics or physical modeling of sound synthesis, numerical simulation is a necessary tool, and may be carried out by a variety of means. One approach is to make use of so-called finite-difference or finite-difference time-domain methods, whereby the numerical solution is computed as a recursion operating over a grid. This chapter is intended as a basic tutorial on the design and implementation of such methods, for a variety of simple systems. The 1-D wave equation and simple difference schemes are covered in Sect. 19.1, accompanied by an analysis of numerical dispersion and stability, as well as implementation details via vector-matrix representations. Similar treatments follow for the case of the ideal stiff bar in Sect. 19.2, the acoustic tube in Sect. 19.3, the 2-D and 3-D wave equations in Sect. 19.4, and finally the stiff plate in Sect. 19.5. Some more general nontechnical comments on more complex extensions to nonlinear systems appear in Sect. 19.6.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
19.1
Zurück zum Zitat R. Courant, K. Friedrichs, H. Lewy: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100(1), 32–74 (1928)MathSciNetCrossRef R. Courant, K. Friedrichs, H. Lewy: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100(1), 32–74 (1928)MathSciNetCrossRef
19.2
Zurück zum Zitat R.D. Richtmyer: Difference Methods for Initial-Value Problems (Interscience, New York 1957)MATH R.D. Richtmyer: Difference Methods for Initial-Value Problems (Interscience, New York 1957)MATH
19.3
Zurück zum Zitat G.E. Forsythe, W.R. Wasow: Finite-Difference Methods for Partial Differential Equations (Wiley, New York 1960)MATH G.E. Forsythe, W.R. Wasow: Finite-Difference Methods for Partial Differential Equations (Wiley, New York 1960)MATH
19.4
Zurück zum Zitat K.S. Yee: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)CrossRef K.S. Yee: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)CrossRef
19.5
Zurück zum Zitat A. Taflove: Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems, IEEE Trans. Electromagn. Compat. EMC 22(3), 191–202 (1980)CrossRef A. Taflove: Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems, IEEE Trans. Electromagn. Compat. EMC 22(3), 191–202 (1980)CrossRef
19.6
Zurück zum Zitat P. Ruiz: A Technique for Simulating the Vibrations of Strings with a Digital Computer, Master’s Thesis (Univ. Illinois, Urbana 1969) P. Ruiz: A Technique for Simulating the Vibrations of Strings with a Digital Computer, Master’s Thesis (Univ. Illinois, Urbana 1969)
19.7
Zurück zum Zitat L. Hiller, P. Ruiz: Synthesizing musical sounds by solving the wave equation for vibrating objects: Part II, J. Audio Eng. Soc. 19(7), 542–550 (1971) L. Hiller, P. Ruiz: Synthesizing musical sounds by solving the wave equation for vibrating objects: Part II, J. Audio Eng. Soc. 19(7), 542–550 (1971)
19.8
Zurück zum Zitat J. Kelly, C. Lochbaum: Speech synthesis. In: Proc. 4th Int. Congr. Acoust., Copenhagen (1962) pp. 1–4 J. Kelly, C. Lochbaum: Speech synthesis. In: Proc. 4th Int. Congr. Acoust., Copenhagen (1962) pp. 1–4
19.9
Zurück zum Zitat R. Bacon, J. Bowsher: A discrete model of a struck string, Acustica 41, 21–27 (1978) R. Bacon, J. Bowsher: A discrete model of a struck string, Acustica 41, 21–27 (1978)
19.10
Zurück zum Zitat X. Boutillon: Model for piano hammers: Experimental determination and digital simulation, J. Acoust. Soc. Am. 83(2), 746–754 (1988)CrossRef X. Boutillon: Model for piano hammers: Experimental determination and digital simulation, J. Acoust. Soc. Am. 83(2), 746–754 (1988)CrossRef
19.11
Zurück zum Zitat A. Chaigne, A. Askenfelt: Numerical simulations of struck strings. I. A physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95(2), 1112–1118 (1994)CrossRef A. Chaigne, A. Askenfelt: Numerical simulations of struck strings. I. A physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95(2), 1112–1118 (1994)CrossRef
19.12
Zurück zum Zitat S. van Duyne, J.O. Smith III: Physical modelling with the 2-D digital waveguide mesh. In: Proc. Int. Comput. Music Conf., Tokyo (1993) pp. 40–47 S. van Duyne, J.O. Smith III: Physical modelling with the 2-D digital waveguide mesh. In: Proc. Int. Comput. Music Conf., Tokyo (1993) pp. 40–47
19.13
Zurück zum Zitat F. Fontana, D. Rocchesso: Physical modelling of membranes for percussion instruments, Acta Acust. united Acust. 84(3), 529–542 (1998) F. Fontana, D. Rocchesso: Physical modelling of membranes for percussion instruments, Acta Acust. united Acust. 84(3), 529–542 (1998)
19.14
Zurück zum Zitat L. Savioja, T. Rinne, T. Takala: Simulation of room acoustics with a 3-D finite-difference mesh. In: Proc. Int. Comput. Music Conf., Århus (1994) pp. 463–466 L. Savioja, T. Rinne, T. Takala: Simulation of room acoustics with a 3-D finite-difference mesh. In: Proc. Int. Comput. Music Conf., Århus (1994) pp. 463–466
19.15
Zurück zum Zitat S. van Duyne, J.O. Smith III: The 3-D tetrahedral digital waveguide mesh with musical applications. In: Proc. Int. Comput. Music Conf., Hong Kong (1996) pp. 9–16 S. van Duyne, J.O. Smith III: The 3-D tetrahedral digital waveguide mesh with musical applications. In: Proc. Int. Comput. Music Conf., Hong Kong (1996) pp. 9–16
19.16
Zurück zum Zitat D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, J. Acoust. Soc. Am. 95(5), 2313–2319 (1994)CrossRef D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, J. Acoust. Soc. Am. 95(5), 2313–2319 (1994)CrossRef
19.17
Zurück zum Zitat S. Bilbao: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics (Wiley, Chichester 2009)CrossRef S. Bilbao: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics (Wiley, Chichester 2009)CrossRef
19.18
Zurück zum Zitat P. Morse, U. Ingard: Theoretical Acoustics (Princeton University Press, Princeton 1968) P. Morse, U. Ingard: Theoretical Acoustics (Princeton University Press, Princeton 1968)
19.19
Zurück zum Zitat J.O. Smith III: Physical Audio Signal Procesing 2004) J.O. Smith III: Physical Audio Signal Procesing 2004)
19.20
Zurück zum Zitat J. Strikwerda: Finite Difference Schemes and Partial Differential Equations (Wadsworth Brooks, Pacific Grove 1989)MATH J. Strikwerda: Finite Difference Schemes and Partial Differential Equations (Wadsworth Brooks, Pacific Grove 1989)MATH
19.21
Zurück zum Zitat B. Gustafsson, H.-O. Kreiss, J. Oliger: Time Dependent Problems and Difference Methods (Wiley, New York 1995)MATH B. Gustafsson, H.-O. Kreiss, J. Oliger: Time Dependent Problems and Difference Methods (Wiley, New York 1995)MATH
19.22
Zurück zum Zitat M. Ducceschi, S. Bilbao: Linear stiff string vibrations in musical acoustics: assessment and comparison of models, J. Acoust. Soc. Am. 140(4), 2445 (2016)CrossRef M. Ducceschi, S. Bilbao: Linear stiff string vibrations in musical acoustics: assessment and comparison of models, J. Acoust. Soc. Am. 140(4), 2445 (2016)CrossRef
19.23
Zurück zum Zitat N. Fletcher, T. Rossing: The Physics of Musical Instruments (Springer, New York 1998)CrossRef N. Fletcher, T. Rossing: The Physics of Musical Instruments (Springer, New York 1998)CrossRef
19.24
Zurück zum Zitat A.G. Webster: Acoustical impedance, and the theory of horns and of the phonograph, Proc. Natl. Acad. Sci. U.S.A. 5(7), 275–282 (1919)CrossRef A.G. Webster: Acoustical impedance, and the theory of horns and of the phonograph, Proc. Natl. Acad. Sci. U.S.A. 5(7), 275–282 (1919)CrossRef
19.25
Zurück zum Zitat M. Campbell, C. Greated: The Musician’s Guide to Acoustics (Oxford University Press, Oxford 1987) M. Campbell, C. Greated: The Musician’s Guide to Acoustics (Oxford University Press, Oxford 1987)
19.26
Zurück zum Zitat A.H. Benade: On the propagation of sound waves in a cylindrical conduit, J. Acoust. Soc. Am. 44(2), 616–623 (1968)CrossRef A.H. Benade: On the propagation of sound waves in a cylindrical conduit, J. Acoust. Soc. Am. 44(2), 616–623 (1968)CrossRef
19.27
Zurück zum Zitat R. Caussé, J. Kergomard, X. Lurton: Input impedance of brass musical instruments – Comparison between experiment and numerical models, J. Acoust. Soc. Am. 75(1), 241–254 (1984)CrossRef R. Caussé, J. Kergomard, X. Lurton: Input impedance of brass musical instruments – Comparison between experiment and numerical models, J. Acoust. Soc. Am. 75(1), 241–254 (1984)CrossRef
19.28
Zurück zum Zitat D.H. Keefe: Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions, J. Acoust. Soc. Am. 75(1), 58–62 (1984)CrossRef D.H. Keefe: Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions, J. Acoust. Soc. Am. 75(1), 58–62 (1984)CrossRef
19.29
Zurück zum Zitat J. Kergomard, R. Caussé: Measurement of acoustic impedance using a capillary: An attempt to achieve optimization, J. Acoust. Soc. Am. 79(4), 1129–1140 (1986)CrossRef J. Kergomard, R. Caussé: Measurement of acoustic impedance using a capillary: An attempt to achieve optimization, J. Acoust. Soc. Am. 79(4), 1129–1140 (1986)CrossRef
19.30
Zurück zum Zitat S. Bilbao, R. Harrison, J. Kergomard, B. Lombard, C. Vergez: Passive models of wave propagation in acoustic tubes, J. Acoust. Soc. Am. 138, 555–558 (2015)CrossRef S. Bilbao, R. Harrison, J. Kergomard, B. Lombard, C. Vergez: Passive models of wave propagation in acoustic tubes, J. Acoust. Soc. Am. 138, 555–558 (2015)CrossRef
19.31
Zurück zum Zitat S. Bilbao, R. Harrison: Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross-section, J. Acoust. Soc. Am. 140, 728–740 (2016)CrossRef S. Bilbao, R. Harrison: Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross-section, J. Acoust. Soc. Am. 140, 728–740 (2016)CrossRef
19.32
Zurück zum Zitat T. Hélie, R. Mignot, D. Matignon: Waveguide modeling of lossy flared acoustic pipes: Derivation of a Kelly–Lochbaum structure for real-time simulations. In: IEEE Workshop Appl. Signal Process. Audio Acoust., New Paltz (2007) pp. 267–270 T. Hélie, R. Mignot, D. Matignon: Waveguide modeling of lossy flared acoustic pipes: Derivation of a Kelly–Lochbaum structure for real-time simulations. In: IEEE Workshop Appl. Signal Process. Audio Acoust., New Paltz (2007) pp. 267–270
19.33
Zurück zum Zitat R. Mignot, T. Hélie, D. Matignon: Digital waveguide modeling for wind instruments: Building a state-space representation based on Webster–Lokshin model, IEEE Trans. Audio Speech Lang. Process. 18(4), 843–854 (2010)CrossRef R. Mignot, T. Hélie, D. Matignon: Digital waveguide modeling for wind instruments: Building a state-space representation based on Webster–Lokshin model, IEEE Trans. Audio Speech Lang. Process. 18(4), 843–854 (2010)CrossRef
19.34
Zurück zum Zitat O.V. Rudenko, S.I. Soluyan: Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, New York 1977)CrossRef O.V. Rudenko, S.I. Soluyan: Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, New York 1977)CrossRef
19.35
Zurück zum Zitat S. Adachi, M. Sato: Time-domain simulation of sound production in the brass instrument, J. Acoust. Soc. Am. 97(6), 3850–3861 (1995)CrossRef S. Adachi, M. Sato: Time-domain simulation of sound production in the brass instrument, J. Acoust. Soc. Am. 97(6), 3850–3861 (1995)CrossRef
19.36
Zurück zum Zitat S. Adachi, M. Sato: Trumpet sound simulation using a two-dimensional lip vibration model, J. Acoust. Soc. Am. 99(2), 1200–1209 (1996)CrossRef S. Adachi, M. Sato: Trumpet sound simulation using a two-dimensional lip vibration model, J. Acoust. Soc. Am. 99(2), 1200–1209 (1996)CrossRef
19.37
Zurück zum Zitat H. Levine, J. Schwinger: On the radiation of sound from an unflanged circular pipe, Phys. Rev. 73(4), 383–406 (1948)MathSciNetCrossRef H. Levine, J. Schwinger: On the radiation of sound from an unflanged circular pipe, Phys. Rev. 73(4), 383–406 (1948)MathSciNetCrossRef
19.38
Zurück zum Zitat R. Harrison, S. Bilbao, J. Perry, T. Wishart: An environment for physical modeling of articulated brass instruments, Comput. Music J. 39(4), 80–95 (2015)CrossRef R. Harrison, S. Bilbao, J. Perry, T. Wishart: An environment for physical modeling of articulated brass instruments, Comput. Music J. 39(4), 80–95 (2015)CrossRef
19.39
Zurück zum Zitat R. Harrison-Harsley: Physical Modelling of Brass Instruments Using Finite-Difference Time-Domain Methods, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2017) R. Harrison-Harsley: Physical Modelling of Brass Instruments Using Finite-Difference Time-Domain Methods, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2017)
19.40
Zurück zum Zitat J.O. Smith III: Efficient simulation of the reed-bore and bow-string mechanisms. In: Proc. Int. Comput. Music Conf., The Hague (1986) pp. 275–280 J.O. Smith III: Efficient simulation of the reed-bore and bow-string mechanisms. In: Proc. Int. Comput. Music Conf., The Hague (1986) pp. 275–280
19.41
Zurück zum Zitat T. Hélie: Unidimensional models of acoustic propagation in axisymmetric waveguides, J. Acoust. Soc. Am. 114(5), 2633–2647 (2003)CrossRef T. Hélie: Unidimensional models of acoustic propagation in axisymmetric waveguides, J. Acoust. Soc. Am. 114(5), 2633–2647 (2003)CrossRef
19.42
Zurück zum Zitat H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, New York 2011)MATH H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, New York 2011)MATH
19.43
Zurück zum Zitat J. Conway, N.J.A. Sloane: Sphere Packings, Lattices and Groups (Springer, New York 1988)CrossRef J. Conway, N.J.A. Sloane: Sphere Packings, Lattices and Groups (Springer, New York 1988)CrossRef
19.44
Zurück zum Zitat D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am. 98, 3302–3308 (1995)CrossRef D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am. 98, 3302–3308 (1995)CrossRef
19.45
Zurück zum Zitat J. Botts, L. Savioja: Integrating finite difference schemes for scalar and vector wave equations. In: IEEE-ICASSP, Vancouver (2013) pp. 171–175 J. Botts, L. Savioja: Integrating finite difference schemes for scalar and vector wave equations. In: IEEE-ICASSP, Vancouver (2013) pp. 171–175
19.46
Zurück zum Zitat S. Bilbao: Modeling of complex geometries and boundary conditions in finite difference–finite volume time domain room acoustics simulation, IEEE Trans. Audio Speech Lang. Process. 21(7), 1524–1533 (2013)CrossRef S. Bilbao: Modeling of complex geometries and boundary conditions in finite difference–finite volume time domain room acoustics simulation, IEEE Trans. Audio Speech Lang. Process. 21(7), 1524–1533 (2013)CrossRef
19.47
Zurück zum Zitat S. Bilbao, B. Hamilton, J. Botts, L. Savioja: Finite volume time domain room acoustics simulation under general impedance boundary conditions, IEEE Trans. Audio Speech Lang. Process. 24(1), 161–173 (2016)CrossRef S. Bilbao, B. Hamilton, J. Botts, L. Savioja: Finite volume time domain room acoustics simulation under general impedance boundary conditions, IEEE Trans. Audio Speech Lang. Process. 24(1), 161–173 (2016)CrossRef
19.48
Zurück zum Zitat G.D. Smith: Numerical Solution of Partial Differential Equations: With Exercises and Worked Solutions (Oxford Univ. Press, Oxford 1965)MATH G.D. Smith: Numerical Solution of Partial Differential Equations: With Exercises and Worked Solutions (Oxford Univ. Press, Oxford 1965)MATH
19.49
Zurück zum Zitat W.F. Spotz, G.F. Carey: A high-order compact formulation for the 3-D Poisson equation, Numer. Methods Partial Differ. Equ. 12(2), 235–243 (1996)MathSciNetCrossRef W.F. Spotz, G.F. Carey: A high-order compact formulation for the 3-D Poisson equation, Numer. Methods Partial Differ. Equ. 12(2), 235–243 (1996)MathSciNetCrossRef
19.50
Zurück zum Zitat B. Hamilton, S. Bilbao, C.J. Webb: Revisiting implicit finite difference schemes for 3-D room acoustics simulations on GPU. In: DAFx (Univ. of Erlangen, Erlangen 2014) B. Hamilton, S. Bilbao, C.J. Webb: Revisiting implicit finite difference schemes for 3-D room acoustics simulations on GPU. In: DAFx (Univ. of Erlangen, Erlangen 2014)
19.51
Zurück zum Zitat B. Hamilton: Finite Difference and Finite Volume Methods for Wave-Based Modelling of Room Acoustics, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2016) B. Hamilton: Finite Difference and Finite Volume Methods for Wave-Based Modelling of Room Acoustics, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2016)
19.52
Zurück zum Zitat A. Love: The small free vibrations and deformation of a thin elastic shell, Philos. Trans. R. Soc. Lond. A 179, 491–546 (1888)CrossRef A. Love: The small free vibrations and deformation of a thin elastic shell, Philos. Trans. R. Soc. Lond. A 179, 491–546 (1888)CrossRef
19.53
Zurück zum Zitat E. Reissner: The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. 12, 69–77 (1945)MathSciNetMATH E. Reissner: The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. 12, 69–77 (1945)MathSciNetMATH
19.54
Zurück zum Zitat R. Mindlin: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech. 18, 31–38 (1951)MATH R. Mindlin: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech. 18, 31–38 (1951)MATH
19.55
Zurück zum Zitat A. Chaigne, C. Lambourg: Time-domain simulation of damped impacted plates I. Theory and experiments, J. Acoust. Soc. Am. 109(4), 1422–1432 (2001)CrossRef A. Chaigne, C. Lambourg: Time-domain simulation of damped impacted plates I. Theory and experiments, J. Acoust. Soc. Am. 109(4), 1422–1432 (2001)CrossRef
19.56
Zurück zum Zitat K. Arcas, A. Chaigne: On the quality of plate reverberation, Appl. Acoust. 71(2), 147–156 (2010)CrossRef K. Arcas, A. Chaigne: On the quality of plate reverberation, Appl. Acoust. 71(2), 147–156 (2010)CrossRef
19.57
Zurück zum Zitat E. Jansson: Acoustics for Violin and Guitar Makers (Department of Speech, Music and Hearing, Stockholm 2002) E. Jansson: Acoustics for Violin and Guitar Makers (Department of Speech, Music and Hearing, Stockholm 2002)
19.58
19.59
Zurück zum Zitat A. Chaigne, C. Touzé, O. Thomas: Nonlinear vibrations and chaos in gongs and cymbals, Acoust. Sci. Technol. 26(5), 403–409 (2005)CrossRef A. Chaigne, C. Touzé, O. Thomas: Nonlinear vibrations and chaos in gongs and cymbals, Acoust. Sci. Technol. 26(5), 403–409 (2005)CrossRef
19.60
Zurück zum Zitat A.H. Nayfeh, D.T. Mook: Nonlinear Oscillations (Wiley, New York 1979)MATH A.H. Nayfeh, D.T. Mook: Nonlinear Oscillations (Wiley, New York 1979)MATH
19.61
Zurück zum Zitat K.-J. Bathe: Finite Element Procedures (Prentice Hall, Upper Saddle River 1996)MATH K.-J. Bathe: Finite Element Procedures (Prentice Hall, Upper Saddle River 1996)MATH
19.62
Zurück zum Zitat M.J. Elejabarrieta, A. Ezcurra, C. Santamaria: Vibrational behaviour of the guitar soundboard analysed by the finite element method, Acta Acust. united Acust. 87(1), 128–136 (2001) M.J. Elejabarrieta, A. Ezcurra, C. Santamaria: Vibrational behaviour of the guitar soundboard analysed by the finite element method, Acta Acust. united Acust. 87(1), 128–136 (2001)
19.63
Zurück zum Zitat J. Berthaut, M.N. Ichchou, L. Jezequel: Piano soundboard: Structural behavior, numerical and experimental study in the modal range, Appl. Acoust. 64(11), 1113–1136 (2003)CrossRef J. Berthaut, M.N. Ichchou, L. Jezequel: Piano soundboard: Structural behavior, numerical and experimental study in the modal range, Appl. Acoust. 64(11), 1113–1136 (2003)CrossRef
19.64
Zurück zum Zitat S.A. Van Duyne: Digital Filter Applications to Modeling Wave Propagation in Springs, Strings, Membranes and Acoustical Space, Ph.D. Thesis (Center for Computer Research in Music and Acoustic, Stanford Univ., Stanford 2007) S.A. Van Duyne: Digital Filter Applications to Modeling Wave Propagation in Springs, Strings, Membranes and Acoustical Space, Ph.D. Thesis (Center for Computer Research in Music and Acoustic, Stanford Univ., Stanford 2007)
19.65
Zurück zum Zitat C. Camier, C. Touzé, O. Thomas: Non-linear vibrations of imperfect free-edge circular plates and shells, Eur. J. Mech. A 28(3), 500–515 (2009)CrossRef C. Camier, C. Touzé, O. Thomas: Non-linear vibrations of imperfect free-edge circular plates and shells, Eur. J. Mech. A 28(3), 500–515 (2009)CrossRef
19.66
Zurück zum Zitat M. Ducceschi, C. Touzé, S. Bilbao, C.J. Webb: Nonlinear dynamics of rectangular plates: Investigation of modal interaction in free and forced vibrations, Acta Mechanica 225(1), 213–232 (2014)MathSciNetCrossRef M. Ducceschi, C. Touzé, S. Bilbao, C.J. Webb: Nonlinear dynamics of rectangular plates: Investigation of modal interaction in free and forced vibrations, Acta Mechanica 225(1), 213–232 (2014)MathSciNetCrossRef
19.67
Zurück zum Zitat C. Lambourg, A. Chaigne, D. Matignon: Time-domain simulation of damped impacted plates. II. Numerical model and results, J. Acoust. Soc. Am. 109(4), 1433–1447 (2001)CrossRef C. Lambourg, A. Chaigne, D. Matignon: Time-domain simulation of damped impacted plates. II. Numerical model and results, J. Acoust. Soc. Am. 109(4), 1433–1447 (2001)CrossRef
19.68
Zurück zum Zitat S. Bilbao: A digital plate reverberation algorithm, J. Audio Eng. Soc. 55(3), 135–144 (2007)MathSciNet S. Bilbao: A digital plate reverberation algorithm, J. Audio Eng. Soc. 55(3), 135–144 (2007)MathSciNet
19.69
Zurück zum Zitat S. Bilbao: Percussion synthesis based on models of nonlinear shell vibration, IEEE Trans. Audio Speech Lang. Process. 18(4), 872–880 (2010)CrossRef S. Bilbao: Percussion synthesis based on models of nonlinear shell vibration, IEEE Trans. Audio Speech Lang. Process. 18(4), 872–880 (2010)CrossRef
19.70
Zurück zum Zitat S. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and Shells, Vol. 2 (McGraw-Hill, New York 1959)MATH S. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and Shells, Vol. 2 (McGraw-Hill, New York 1959)MATH
19.71
Zurück zum Zitat O. Thomas, S. Bilbao: Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties, J. Sound Vib. 315(3), 569–590 (2008)CrossRef O. Thomas, S. Bilbao: Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties, J. Sound Vib. 315(3), 569–590 (2008)CrossRef
19.72
Zurück zum Zitat S. Bilbao, L. Savioja, J.O. Smith III: Parametrized finite difference schemes for plates: Stability, the reduction of directional dispersion and frequency warping, IEEE Trans. Audio Speech Lang. Process. 15(4), 1488–1495 (2007)CrossRef S. Bilbao, L. Savioja, J.O. Smith III: Parametrized finite difference schemes for plates: Stability, the reduction of directional dispersion and frequency warping, IEEE Trans. Audio Speech Lang. Process. 15(4), 1488–1495 (2007)CrossRef
19.73
Zurück zum Zitat A. Torin: Percussion Instrument Modelling In 3D: Sound Synthesis Through Time Domain Numerical Simulation, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2015) A. Torin: Percussion Instrument Modelling In 3D: Sound Synthesis Through Time Domain Numerical Simulation, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2015)
19.74
Zurück zum Zitat S. Bilbao, J.O. Smith III: Energy conserving finite difference schemes for nonlinear strings, Acustica 91, 299–311 (2005) S. Bilbao, J.O. Smith III: Energy conserving finite difference schemes for nonlinear strings, Acustica 91, 299–311 (2005)
19.75
Zurück zum Zitat H. Conklin: Piano strings and phantom partials, J. Acoust. Soc. Am. 102, 659 (1997)CrossRef H. Conklin: Piano strings and phantom partials, J. Acoust. Soc. Am. 102, 659 (1997)CrossRef
19.76
Zurück zum Zitat S. Bilbao: Conservative numerical methods for nonlinear strings, J. Acoust. Soc. Am. 118(5), 3316–3327 (2005)CrossRef S. Bilbao: Conservative numerical methods for nonlinear strings, J. Acoust. Soc. Am. 118(5), 3316–3327 (2005)CrossRef
19.77
Zurück zum Zitat J. Chabassier: Modeling and Numerical Simulation of the Piano Through Physical Modeling, Ph.D. Thesis (Ecole Polytechnique, Paris 2012) J. Chabassier: Modeling and Numerical Simulation of the Piano Through Physical Modeling, Ph.D. Thesis (Ecole Polytechnique, Paris 2012)
19.78
Zurück zum Zitat S. Bilbao: A family of conservative finite difference schemes for the dynamical von Karman plate equations, Numer. Methods Partial Differ. Equ. 24(1), 193–216 (2008)MathSciNetCrossRef S. Bilbao: A family of conservative finite difference schemes for the dynamical von Karman plate equations, Numer. Methods Partial Differ. Equ. 24(1), 193–216 (2008)MathSciNetCrossRef
19.79
Zurück zum Zitat T. Rossing, N. Fletcher: Nonlinear vibrations in plates and gongs, J. Acoust. Soc. Am. 73(1), 345–351 (1983)CrossRef T. Rossing, N. Fletcher: Nonlinear vibrations in plates and gongs, J. Acoust. Soc. Am. 73(1), 345–351 (1983)CrossRef
19.80
Zurück zum Zitat C. Vyasarayani, S. Birkett, J. McPhee: Modeling the dynamics of a vibrating string with a finite distributed unilateral constraint: Application to the sitar, J. Acoust. Soc. Am. 125(6), 3673–3682 (2010)CrossRef C. Vyasarayani, S. Birkett, J. McPhee: Modeling the dynamics of a vibrating string with a finite distributed unilateral constraint: Application to the sitar, J. Acoust. Soc. Am. 125(6), 3673–3682 (2010)CrossRef
19.81
Zurück zum Zitat S. Bilbao, A. Torin: Numerical modeling and sound synthesis for articulated string/fretboard interactions, J. Audio Eng. Soc. 63(5), 336–347 (2015)CrossRef S. Bilbao, A. Torin: Numerical modeling and sound synthesis for articulated string/fretboard interactions, J. Audio Eng. Soc. 63(5), 336–347 (2015)CrossRef
19.82
Zurück zum Zitat S. Bilbao, A. Torin, V. Chatziioannou: Numerical modeling of collisions in musical instruments, Acta Acust. united Acust. 101(1), 155–173 (2015)CrossRef S. Bilbao, A. Torin, V. Chatziioannou: Numerical modeling of collisions in musical instruments, Acta Acust. united Acust. 101(1), 155–173 (2015)CrossRef
19.83
Zurück zum Zitat A. Hirschberg, J. Gilbert, R. Msallam, A. Wijnands: Shock waves in trombones, J. Acoust. Soc. Am. 99(3), 1754–1758 (1996)CrossRef A. Hirschberg, J. Gilbert, R. Msallam, A. Wijnands: Shock waves in trombones, J. Acoust. Soc. Am. 99(3), 1754–1758 (1996)CrossRef
19.84
Zurück zum Zitat G. Sod: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetCrossRef G. Sod: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetCrossRef
19.85
Zurück zum Zitat R. Leveque: Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge 2002)CrossRef R. Leveque: Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge 2002)CrossRef
19.86
Zurück zum Zitat B. Lombard, D. Matignon, Y. Le Gorrec: A fractional Burgers equation arising innonlinear acoustics: Theory and numerics. In: Proc. 9th IFAC Symp. Nonlinear Contr. Syst., Toulouse (2013) B. Lombard, D. Matignon, Y. Le Gorrec: A fractional Burgers equation arising innonlinear acoustics: Theory and numerics. In: Proc. 9th IFAC Symp. Nonlinear Contr. Syst., Toulouse (2013)
Metadaten
Titel
Finite-Difference Schemes in Musical Acoustics: A Tutorial
verfasst von
Stefan Bilbao
Brian Hamilton
Reginald Harrison
Alberto Torin
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_19

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.