Skip to main content

2018 | OriginalPaper | Buchkapitel

9. An Integral Formula Adapted to Different Boundary Conditions for Arbitrarily High-Dimensional Nonlinear Klein–Gordon Equations

verfasst von : Xinyuan Wu, Bin Wang

Erschienen in: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is concerned with the initial-boundary value problem for arbitrarily high-dimensional Klein–Gordon equations, posed on a bounded domain \(\varOmega \subset \mathbb {R}^d\) for \(d \ge 1\) and subject to suitable boundary conditions. We derive and analyse an integral formula which proves to be adapted to different boundary conditions for general Klein–Gordon equations in arbitrarily high-dimensional spaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)MathSciNetCrossRef Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)MathSciNetCrossRef
2.
Zurück zum Zitat Bratsos, A.G.: On the numerical solution of the Klein–Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)MathSciNetCrossRef Bratsos, A.G.: On the numerical solution of the Klein–Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)MathSciNetCrossRef
3.
Zurück zum Zitat Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)CrossRef Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)CrossRef
4.
Zurück zum Zitat Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers, 3rd edn. Birkhäuser, Springer, New York, Dordrecht, Heidelberg, London (2012)CrossRef Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers, 3rd edn. Birkhäuser, Springer, New York, Dordrecht, Heidelberg, London (2012)CrossRef
5.
Zurück zum Zitat Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)MATH Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)MATH
6.
Zurück zum Zitat Eilbeck, J.C.: Numerical studies of solitons. In: Bishop, A.R., Schneider, T. (eds.) Solitons and Condensed Matter Physics, pp. 28–43. Springer, New York (1978)CrossRef Eilbeck, J.C.: Numerical studies of solitons. In: Bishop, A.R., Schneider, T. (eds.) Solitons and Condensed Matter Physics, pp. 28–43. Springer, New York (1978)CrossRef
7.
Zurück zum Zitat Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)MATH Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)MATH
8.
Zurück zum Zitat Fordy, A.P.: Soliton Theory: A Survey of Results. Manchester University Press, Manchester (1990)MATH Fordy, A.P.: Soliton Theory: A Survey of Results. Manchester University Press, Manchester (1990)MATH
9.
Zurück zum Zitat Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)MathSciNetCrossRef Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)MathSciNetCrossRef
10.
Zurück zum Zitat García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)MathSciNetCrossRef García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)MathSciNetCrossRef
11.
Zurück zum Zitat Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRef Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRef
12.
Zurück zum Zitat Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005)MathSciNetCrossRef Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005)MathSciNetCrossRef
13.
Zurück zum Zitat Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)MathSciNetCrossRef Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)MathSciNetCrossRef
14.
Zurück zum Zitat Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)MathSciNetCrossRef Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)MathSciNetCrossRef
16.
Zurück zum Zitat Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, New York (1990)MATH Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, New York (1990)MATH
17.
18.
Zurück zum Zitat Liu, C., Wu, X.Y.: The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications. Appl. Math. Lett. 74, 60–67 (2017)MathSciNetCrossRef Liu, C., Wu, X.Y.: The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications. Appl. Math. Lett. 74, 60–67 (2017)MathSciNetCrossRef
19.
Zurück zum Zitat Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)MATH Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)MATH
20.
Zurück zum Zitat Schiesser, W.: The Numerical Methods of Lines: Integration of Partial Differential Equation. Academic Press, San Diego (1991)MATH Schiesser, W.: The Numerical Methods of Lines: Integration of Partial Differential Equation. Academic Press, San Diego (1991)MATH
21.
Zurück zum Zitat Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)MathSciNetCrossRef Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)MathSciNetCrossRef
22.
Zurück zum Zitat Shi, W., Wu, X.Y., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)MathSciNetCrossRef Shi, W., Wu, X.Y., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)MathSciNetCrossRef
23.
Zurück zum Zitat Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)MathSciNetCrossRef Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)MathSciNetCrossRef
24.
Zurück zum Zitat Wang, B., Wu, X.Y.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A. 376, 1185–1190 (2012)MathSciNetCrossRef Wang, B., Wu, X.Y.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A. 376, 1185–1190 (2012)MathSciNetCrossRef
25.
Zurück zum Zitat Wang, B., Liu, K., Wu, X.Y.: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)MathSciNetCrossRef Wang, B., Liu, K., Wu, X.Y.: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)MathSciNetCrossRef
27.
Zurück zum Zitat Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)MathSciNetCrossRef Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)MathSciNetCrossRef
28.
Zurück zum Zitat Wu, X.Y., Liu, C.: An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein–Gordon equations with its applications. J. Math. Phys. 57, 021504 (2016)MathSciNetCrossRef Wu, X.Y., Liu, C.: An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein–Gordon equations with its applications. J. Math. Phys. 57, 021504 (2016)MathSciNetCrossRef
29.
Zurück zum Zitat Wu, X.Y., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Comm. 180, 2250–2257 (2009)MathSciNetCrossRef Wu, X.Y., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Comm. 180, 2250–2257 (2009)MathSciNetCrossRef
30.
Zurück zum Zitat Wu, X.Y., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Comm. 181, 1873–1887 (2010)MathSciNetCrossRef Wu, X.Y., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Comm. 181, 1873–1887 (2010)MathSciNetCrossRef
31.
Zurück zum Zitat Wu, X.Y., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRef Wu, X.Y., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRef
32.
Zurück zum Zitat Wu, X.Y., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Heidelberg (2013)CrossRef Wu, X.Y., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Heidelberg (2013)CrossRef
33.
Zurück zum Zitat Wu, X.Y., Mei, L.J., Liu, C.: An analytical expression of solutions to nonlinear wave equations in higher dimensions with Robin boundary conditions. J. Math. Anal. Appl. 426, 1164–1173 (2015)MathSciNetCrossRef Wu, X.Y., Mei, L.J., Liu, C.: An analytical expression of solutions to nonlinear wave equations in higher dimensions with Robin boundary conditions. J. Math. Anal. Appl. 426, 1164–1173 (2015)MathSciNetCrossRef
34.
Zurück zum Zitat Wu, X.Y., Liu, K., Shi, W.: Structure-Preserving Algorithms for Oscillatory Differential Equations II. Springer, Heidelberg (2015)CrossRef Wu, X.Y., Liu, K., Shi, W.: Structure-Preserving Algorithms for Oscillatory Differential Equations II. Springer, Heidelberg (2015)CrossRef
35.
Zurück zum Zitat Yang, H., Zeng, X., Wu, X. Y.: Variation-of-constants formulae for Maxwell’s equations in time domain, A seminar report at Nanjing University (2017) Yang, H., Zeng, X., Wu, X. Y.: Variation-of-constants formulae for Maxwell’s equations in time domain, A seminar report at Nanjing University (2017)
Metadaten
Titel
An Integral Formula Adapted to Different Boundary Conditions for Arbitrarily High-Dimensional Nonlinear Klein–Gordon Equations
verfasst von
Xinyuan Wu
Bin Wang
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-9004-2_9