Skip to main content
Erschienen in: Wireless Networks 8/2019

17.05.2018

Throughput analysis of cooperative cognitive radio network over generalized κμ and ημ fading channels

verfasst von: Suresh Kumar Balam, P. Siddaiah, Srinivas Nallagonda

Erschienen in: Wireless Networks | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a cooperative cognitive radio network (CCRN) based on energy detection and hard-decision fusion. The performance characteristics are investigated analytically in the presence of noise plus generalized fading channels. In particular, scenarios with \(\kappa\)\(\mu\) and \(\eta\)\(\mu\) fading channels affecting the sensing channels are considered. More precisely, Each cognitive radio user (CRU) relies on an energy detector (ED). The signal from the primary user (PU), received by a CRU, is fed to the ED, and the energy of signal is used to make a local decision. At the fusion center (FC), the decisions received at the FC are fused, using hard-decision fusion, to obtain a final decision on the status of the PU. The performance of CCRN, through total error rate and throughput is evaluated considering the impact of relevant network parameters. Towards that, first we derive the novel mathematical expressions for probability of detection, subject to generalized fading. Also, Monte Carlo simulation is performed to validate the derived expressions. Next, the analytical frame works based on derived expression for evaluating total error rate and throughput performances for any network and channel conditions are developed. Further, the impact of an erroneous sensing (S) and reporting (R) channels on overall performance of CCRN is also investigated. Finally, the impact of the generalized fading parameters, the signal-to-noise ratio, the time-bandwidth product, the number of CRUs, the detection threshold, and the channel error probability on the total error rate and throughput performances is investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
2.
Zurück zum Zitat Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46, 40–48.CrossRef Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46, 40–48.CrossRef
3.
Zurück zum Zitat Biglieri, E. (2012). An overview of cognitive radio for satellite communications. In Proceedings of IEEE first AESS European conference on satellite telecommunications (ESTEL), Italy, Rome (pp. 1–3). Biglieri, E. (2012). An overview of cognitive radio for satellite communications. In Proceedings of IEEE first AESS European conference on satellite telecommunications (ESTEL), Italy, Rome (pp. 1–3).
4.
Zurück zum Zitat Ozger, M., & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157–160.CrossRef Ozger, M., & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157–160.CrossRef
5.
Zurück zum Zitat Saleem, Y., & Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network Computer Applications, 43, 116.CrossRef Saleem, Y., & Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network Computer Applications, 43, 116.CrossRef
6.
Zurück zum Zitat Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference alignment (IA)-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference alignment (IA)-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef
7.
Zurück zum Zitat Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.CrossRef Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.CrossRef
9.
Zurück zum Zitat Digham, F. F., Alouini, M.-S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.CrossRef Digham, F. F., Alouini, M.-S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.CrossRef
10.
Zurück zum Zitat Ghasemi, A., & Sousa, E. S. (2007). Opportunistic spectrum access in fading channels through collaborative sensing? IEEE Transactions on Wireless Communications, 2(2), 71–82. Ghasemi, A., & Sousa, E. S. (2007). Opportunistic spectrum access in fading channels through collaborative sensing? IEEE Transactions on Wireless Communications, 2(2), 71–82.
11.
Zurück zum Zitat Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef
12.
Zurück zum Zitat Chaudhari, S., Lundn, J., Koivunen, V., & Vincent Poor, H. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Transactions on Signal Processing, 60(1), 18–28.CrossRefMathSciNet Chaudhari, S., Lundn, J., Koivunen, V., & Vincent Poor, H. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Transactions on Signal Processing, 60(1), 18–28.CrossRefMathSciNet
13.
Zurück zum Zitat Zhang, W., Mallik, R., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.CrossRef Zhang, W., Mallik, R., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.CrossRef
14.
Zurück zum Zitat Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.CrossRef Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.CrossRef
16.
Zurück zum Zitat Bukhari, S. H. R., Rehmani, M. H., & Siraj, S. (2016). A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Communications Surveys and Tutorials, 18(2), 924–948.CrossRef Bukhari, S. H. R., Rehmani, M. H., & Siraj, S. (2016). A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Communications Surveys and Tutorials, 18(2), 924–948.CrossRef
17.
Zurück zum Zitat Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2016). In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites. International Journal of Satellite Communications and Networking, 34(1), 11–39.CrossRef Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2016). In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites. International Journal of Satellite Communications and Networking, 34(1), 11–39.CrossRef
18.
Zurück zum Zitat Nallagonda, S., Chandra, A., Roy, S. D., Kundu, S., Kukolev, P., & Prokes, A. (2016). Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels. International Journal of Electronics, 103(2), 297–321.CrossRef Nallagonda, S., Chandra, A., Roy, S. D., Kundu, S., Kukolev, P., & Prokes, A. (2016). Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels. International Journal of Electronics, 103(2), 297–321.CrossRef
19.
Zurück zum Zitat Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Tuan Hong, A. (2008). Sensing throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Tuan Hong, A. (2008). Sensing throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef
20.
Zurück zum Zitat Nallagonda, S., Roy, S. D., Kundu, S., Ferrari, G., & Raheli, R. (2018). Censoring-based cooperative cpectrum censing with improved energy detectors and multiple antennas in fading channels. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 537–553.CrossRef Nallagonda, S., Roy, S. D., Kundu, S., Ferrari, G., & Raheli, R. (2018). Censoring-based cooperative cpectrum censing with improved energy detectors and multiple antennas in fading channels. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 537–553.CrossRef
22.
Zurück zum Zitat Banavathu, N. R., & Khan, M. Z. A. (2016). On the throughput maximization of cognitive radio using cooperative spectrum sensing over erroneous control channel. In Proceedings of IEEE national conference on communication (NCC). IIT Guwahati, India (pp. 1–6). Banavathu, N. R., & Khan, M. Z. A. (2016). On the throughput maximization of cognitive radio using cooperative spectrum sensing over erroneous control channel. In Proceedings of IEEE national conference on communication (NCC). IIT Guwahati, India (pp. 1–6).
23.
Zurück zum Zitat Moraes, A. C., Da Costa, D. B., & Yacoub, M. D. (2012). An outage analysis of multibranch diversity receivers with cochannel interference in \(\alpha\)–\(\mu\), \(\kappa\)–\(\mu\), and \(\eta\)–\(\mu\) fading scenarios. Wireless Personal Communications, 64(1), 3–19.CrossRef Moraes, A. C., Da Costa, D. B., & Yacoub, M. D. (2012). An outage analysis of multibranch diversity receivers with cochannel interference in \(\alpha\)\(\mu\), \(\kappa\)\(\mu\), and \(\eta\)\(\mu\) fading scenarios. Wireless Personal Communications, 64(1), 3–19.CrossRef
24.
Zurück zum Zitat Yacoub, M. D. (2007). The \(\kappa\)–\(\mu\) distribution and \(\eta\)–\(\mu\) distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.CrossRef Yacoub, M. D. (2007). The \(\kappa\)\(\mu\) distribution and \(\eta\)\(\mu\) distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.CrossRef
25.
Zurück zum Zitat Sofotasios, P. C., Rebeiz, E., Zhang, L., Tsiftsis, T. A., Cabric, D., & Freear, S. (2013). Energy detection based spectrum sensing over \(\kappa\)–\(\mu\) and \(\kappa\)–\(\mu\) extreme fading channels. IEEE Transactions on Vehicular Technology, 62(3), 1031–1040.CrossRef Sofotasios, P. C., Rebeiz, E., Zhang, L., Tsiftsis, T. A., Cabric, D., & Freear, S. (2013). Energy detection based spectrum sensing over \(\kappa\)\(\mu\) and \(\kappa\)\(\mu\) extreme fading channels. IEEE Transactions on Vehicular Technology, 62(3), 1031–1040.CrossRef
26.
Zurück zum Zitat Adebola, E., & Annamalai, A. (2014). Unified analysis of eneregy detectors with diversity reception in generalized fading channels. IET Communications, 8(17), 3095–3104.CrossRef Adebola, E., & Annamalai, A. (2014). Unified analysis of eneregy detectors with diversity reception in generalized fading channels. IET Communications, 8(17), 3095–3104.CrossRef
27.
Zurück zum Zitat Annamalai, A., & Olaluwe, A. (2014). Energy detection of unknown deterministic signals in \(\kappa\)–\(\mu\) and \(\eta\)–\(\mu\) generalized fading channels with diversity receivers. In Proceedings of international conference on computing, networking and communications, Honolulu, HI (pp. 761–765). Annamalai, A., & Olaluwe, A. (2014). Energy detection of unknown deterministic signals in \(\kappa\)\(\mu\) and \(\eta\)\(\mu\) generalized fading channels with diversity receivers. In Proceedings of international conference on computing, networking and communications, Honolulu, HI (pp. 761–765).
28.
Zurück zum Zitat Srinu, S., Mishra, A., & Farooq, S. (2014). Cooperative sensing throughput analysis over fading channels based on hard decision. In Proceedings of the IEEE international conference on computer and communications technologies, Allahabd, India (pp. 1–5). Srinu, S., Mishra, A., & Farooq, S. (2014). Cooperative sensing throughput analysis over fading channels based on hard decision. In Proceedings of the IEEE international conference on computer and communications technologies, Allahabd, India (pp. 1–5).
29.
Zurück zum Zitat Choi, Y. J., Pak, W., Xin, Y., & Rangarajan, S. (2012). Throughput analysis of cooperative spectrum sensing in Rayleigh-faded cognitive radio systems. IET Communications, 6(9), 1104–1110.CrossRefMathSciNet Choi, Y. J., Pak, W., Xin, Y., & Rangarajan, S. (2012). Throughput analysis of cooperative spectrum sensing in Rayleigh-faded cognitive radio systems. IET Communications, 6(9), 1104–1110.CrossRefMathSciNet
30.
Zurück zum Zitat Nuttall, A. H. (1975). Some integrals involving the QM function. IEEE Transactions on Information Theory, 21(1), 95–96.CrossRefMathSciNet Nuttall, A. H. (1975). Some integrals involving the QM function. IEEE Transactions on Information Theory, 21(1), 95–96.CrossRefMathSciNet
31.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). San Diego: Academic Press.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). San Diego: Academic Press.MATH
32.
Zurück zum Zitat Ermolova, N. Y. (2008). Moment generating functions of the generalized \(\eta\)–\(\mu\) and \(\kappa\)–\(\mu\) distributions and their applications to performance evaluations of communication systems. IEEE Communcations Letters, 12(7), 502–504.CrossRef Ermolova, N. Y. (2008). Moment generating functions of the generalized \(\eta\)\(\mu\) and \(\kappa\)\(\mu\) distributions and their applications to performance evaluations of communication systems. IEEE Communcations Letters, 12(7), 502–504.CrossRef
33.
Zurück zum Zitat Hu, H., Zhang, H., Yu, H., Chen, Y., & Jafarian, J. (2015). Energy-efficient design of channel sensing in cognitive radio networks. Computers and Electrical Engineering, 42, 207–220.CrossRef Hu, H., Zhang, H., Yu, H., Chen, Y., & Jafarian, J. (2015). Energy-efficient design of channel sensing in cognitive radio networks. Computers and Electrical Engineering, 42, 207–220.CrossRef
34.
Zurück zum Zitat Nallagonda, S., Chandra, A., Roy, S. D., & Kundu, S. (2017). Analytical performance of soft data fusion-aided spectrum sensing in hybrid terrestrial-satellite networks. International Journal of Satellite Communications and Networking, 35(5), 461–480.CrossRef Nallagonda, S., Chandra, A., Roy, S. D., & Kundu, S. (2017). Analytical performance of soft data fusion-aided spectrum sensing in hybrid terrestrial-satellite networks. International Journal of Satellite Communications and Networking, 35(5), 461–480.CrossRef
Metadaten
Titel
Throughput analysis of cooperative cognitive radio network over generalized κ–μ and η–μ fading channels
verfasst von
Suresh Kumar Balam
P. Siddaiah
Srinivas Nallagonda
Publikationsdatum
17.05.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1758-4

Weitere Artikel der Ausgabe 8/2019

Wireless Networks 8/2019 Zur Ausgabe

Neuer Inhalt