Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

State-of-the-Art Computational Methods for Finite Deformation Contact Modeling of Solids and Structures

verfasst von : Alexander Popp

Erschienen in: Contact Modeling for Solids and Particles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this contribution, we review mortar finite element methods (FEM), which are nowadays the most well-established computational technique for contact modeling of solids and structures in the context of finite deformations and frictional sliding. Based on some concepts of nonlinear continuum mechanics, the mortar approach is first presented for the more accessible case of mesh tying (also referred to as tied contact). Mortar methods for unilateral contact then follow in a rather straightforward manner, despite the fact that several complexities, such as inequality constraints, are added to the problem formulation. A special focus is set on practical aspects of the implementation of mortar methods within a fully nonlinear, 3D finite element environment. Specifically, the choice of suitable discrete Lagrange multiplier bases, aspects of high performance computing (HPC), numerical integration procedures and new discretization techniques such as isogeometric analysis (IGA) using NURBS are discussed. Eventually, the great potential of mortar methods in the more general field of computational interface mechanics is exemplified through applications such as wear modeling and coupled thermo-mechanical interfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat C. Agelet De Saracibar. Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications. Archives of Computational Methods in Engineering, 5(3):243–301, 1998.MathSciNetCrossRef C. Agelet De Saracibar. Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications. Archives of Computational Methods in Engineering, 5(3):243–301, 1998.MathSciNetCrossRef
Zurück zum Zitat P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering, 92(3):353–375, 1991.MathSciNetMATHCrossRef P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering, 92(3):353–375, 1991.MathSciNetMATHCrossRef
Zurück zum Zitat A. Apostolatos, R.t Schmidt, R. Wüchner, and K.-U. Bletzinger. A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(7):473–504, 2014.MathSciNetCrossRef A. Apostolatos, R.t Schmidt, R. Wüchner, and K.-U. Bletzinger. A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(7):473–504, 2014.MathSciNetCrossRef
Zurück zum Zitat J. F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24(8):981–988, 1953.CrossRef J. F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24(8):981–988, 1953.CrossRef
Zurück zum Zitat I. Argatov. Asymptotic modeling of reciprocating sliding wear with application to local interwire contact. Wear, 271(78):1147–1155, 2011.CrossRef I. Argatov. Asymptotic modeling of reciprocating sliding wear with application to local interwire contact. Wear, 271(78):1147–1155, 2011.CrossRef
Zurück zum Zitat I. Argatov and W. Tato. Asymptotic modeling of reciprocating sliding wear comparison with finite-element simulations. European Journal of Mechanics - A/Solids, 34:1–11, 2012.MathSciNetMATHCrossRef I. Argatov and W. Tato. Asymptotic modeling of reciprocating sliding wear comparison with finite-element simulations. European Journal of Mechanics - A/Solids, 34:1–11, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat K.-J. Bathe. Finite element procedures. Prentice Hall, 1996. K.-J. Bathe. Finite element procedures. Prentice Hall, 1996.
Zurück zum Zitat K.-J. Bathe and A. Chaudhary. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering, 21(1):65–88, 1985.MATHCrossRef K.-J. Bathe and A. Chaudhary. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering, 21(1):65–88, 1985.MATHCrossRef
Zurück zum Zitat T. Belytschko, W. K. Liu, and B. Moran. Nonlinear finite elements for continua and structures. Wiley, 2000. T. Belytschko, W. K. Liu, and B. Moran. Nonlinear finite elements for continua and structures. Wiley, 2000.
Zurück zum Zitat F. Ben Belgacem. The mortar finite element method with Lagrange multipliers. Numerische Mathematik, 84(2):173–197, 1999.MathSciNetMATHCrossRef F. Ben Belgacem. The mortar finite element method with Lagrange multipliers. Numerische Mathematik, 84(2):173–197, 1999.MathSciNetMATHCrossRef
Zurück zum Zitat F. Ben Belgacem, P. Hild, and P. Laborde. The mortar finite element method for contact problems. Mathematical and Computer Modelling, 28(4-8):263–271, 1998.MathSciNetMATHCrossRef F. Ben Belgacem, P. Hild, and P. Laborde. The mortar finite element method for contact problems. Mathematical and Computer Modelling, 28(4-8):263–271, 1998.MathSciNetMATHCrossRef
Zurück zum Zitat H. Ben Dhia and M. Torkhani. Modeling and computation of fretting wear of structures under sharp contact. International Journal for Numerical Methods in Engineering, 85(1):61–83, 2011.CrossRef H. Ben Dhia and M. Torkhani. Modeling and computation of fretting wear of structures under sharp contact. International Journal for Numerical Methods in Engineering, 85(1):61–83, 2011.CrossRef
Zurück zum Zitat D. J. Benson and J. O. Hallquist. A single surface contact algorithm for the post-buckling analysis of shell structures. Computer Methods in Applied Mechanics and Engineering, 78(2):141–163, 1990.MathSciNetMATHCrossRef D. J. Benson and J. O. Hallquist. A single surface contact algorithm for the post-buckling analysis of shell structures. Computer Methods in Applied Mechanics and Engineering, 78(2):141–163, 1990.MathSciNetMATHCrossRef
Zurück zum Zitat C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: the mortar element method. In H. Brezis and J.L. Lions, editors, Nonlinear partial differential equations and their applications, pages 13–51. Pitman/Wiley: London/New York, 1994. C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: the mortar element method. In H. Brezis and J.L. Lions, editors, Nonlinear partial differential equations and their applications, pages 13–51. Pitman/Wiley: London/New York, 1994.
Zurück zum Zitat J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997. J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.
Zurück zum Zitat E. Brivadis, A. Buffa, B. Wohlmuth, and L. Wunderlich. Isogeometric mortar methods. Computer Methods in Applied Mechanics and Engineering, 284:292–319, 2015.MathSciNetMATHCrossRef E. Brivadis, A. Buffa, B. Wohlmuth, and L. Wunderlich. Isogeometric mortar methods. Computer Methods in Applied Mechanics and Engineering, 284:292–319, 2015.MathSciNetMATHCrossRef
Zurück zum Zitat S. Brunssen, F. Schmid, M. Schäfer, and B. I. Wohlmuth. A fast and robust iterative solver for nonlinear contact problems using a primal-dual active set strategy and algebraic multigrid. International Journal for Numerical Methods in Engineering, 69(3):524–543, 2007.MathSciNetMATHCrossRef S. Brunssen, F. Schmid, M. Schäfer, and B. I. Wohlmuth. A fast and robust iterative solver for nonlinear contact problems using a primal-dual active set strategy and algebraic multigrid. International Journal for Numerical Methods in Engineering, 69(3):524–543, 2007.MathSciNetMATHCrossRef
Zurück zum Zitat M. Canajija and J. Brnić. Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. International Journal of Plasticity, 20(10):1851–1874, 2004.MATHCrossRef M. Canajija and J. Brnić. Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. International Journal of Plasticity, 20(10):1851–1874, 2004.MATHCrossRef
Zurück zum Zitat C. Carstensen, O. Scherf, and P. Wriggers. Adaptive finite elements for elastic bodies in contact. SIAM Journal on Scientific Computing, 20(5):1605–1626, 1999.MathSciNetMATHCrossRef C. Carstensen, O. Scherf, and P. Wriggers. Adaptive finite elements for elastic bodies in contact. SIAM Journal on Scientific Computing, 20(5):1605–1626, 1999.MathSciNetMATHCrossRef
Zurück zum Zitat F. J. Cavalieri and A. Cardona. Three-dimensional numerical solution for wear prediction using a mortar contact algorithm. International Journal for Numerical Methods in Engineering, 96:467–486, 2013.MathSciNetMATHCrossRef F. J. Cavalieri and A. Cardona. Three-dimensional numerical solution for wear prediction using a mortar contact algorithm. International Journal for Numerical Methods in Engineering, 96:467–486, 2013.MathSciNetMATHCrossRef
Zurück zum Zitat P. W. Christensen. A semi-smooth Newton method for elasto-plastic contact problems. International Journal of Solids and Structures, 39(8):2323–2341, 2002.MATHCrossRef P. W. Christensen. A semi-smooth Newton method for elasto-plastic contact problems. International Journal of Solids and Structures, 39(8):2323–2341, 2002.MATHCrossRef
Zurück zum Zitat P. W. Christensen, A. Klarbring, J. S. Pang, and N. Strömberg. Formulation and comparison of algorithms for frictional contact problems. International Journal for Numerical Methods in Engineering, 42(1):145–173, 1998.MathSciNetMATHCrossRef P. W. Christensen, A. Klarbring, J. S. Pang, and N. Strömberg. Formulation and comparison of algorithms for frictional contact problems. International Journal for Numerical Methods in Engineering, 42(1):145–173, 1998.MathSciNetMATHCrossRef
Zurück zum Zitat J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha \) method. Journal of Applied Mechanics, 60:371–375, 1993.MathSciNetMATHCrossRef J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha \) method. Journal of Applied Mechanics, 60:371–375, 1993.MathSciNetMATHCrossRef
Zurück zum Zitat T. Cichosz and M. Bischoff. Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 200(9-12):1317–1332, 2011.MathSciNetMATHCrossRef T. Cichosz and M. Bischoff. Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 200(9-12):1317–1332, 2011.MathSciNetMATHCrossRef
Zurück zum Zitat J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of CAD and FEA. Wiley, 2009. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of CAD and FEA. Wiley, 2009.
Zurück zum Zitat L. De Lorenzis, I. Temizer, P. Wriggers, and G. Zavarise. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 87(13):1278–1300, 2011.MathSciNetMATH L. De Lorenzis, I. Temizer, P. Wriggers, and G. Zavarise. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 87(13):1278–1300, 2011.MathSciNetMATH
Zurück zum Zitat L De Lorenzis, P Wriggers, and G Zavarise. A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Computational Mechanics, 49(1):1–20, 2012.MathSciNetMATHCrossRef L De Lorenzis, P Wriggers, and G Zavarise. A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Computational Mechanics, 49(1):1–20, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat L. De Lorenzis, P. Wriggers, and T. J. R. Hughes. Isogeometric contact: a review. GAMM-Mitteilungen, 37(1):85–123, 2014.MathSciNetMATHCrossRef L. De Lorenzis, P. Wriggers, and T. J. R. Hughes. Isogeometric contact: a review. GAMM-Mitteilungen, 37(1):85–123, 2014.MathSciNetMATHCrossRef
Zurück zum Zitat L. De Lorenzis, J. A. Evans, T. J. R. Hughes, and A. Reali. Isogeometric collocation: Neumann boundary conditions and contact. Computer Methods in Applied Mechanics and Engineering, 284:21–54, 2015.MathSciNetCrossRef L. De Lorenzis, J. A. Evans, T. J. R. Hughes, and A. Reali. Isogeometric collocation: Neumann boundary conditions and contact. Computer Methods in Applied Mechanics and Engineering, 284:21–54, 2015.MathSciNetCrossRef
Zurück zum Zitat E. A. de Souza Neto, D. Perić, M. Dutko, and D. R. J. Owen. Design of simple low order finite elements for large strain analysis of nearly incompressible solids. International Journal of Solids and Structures, 33(20-22):3277–3296, 1996.MathSciNetMATHCrossRef E. A. de Souza Neto, D. Perić, M. Dutko, and D. R. J. Owen. Design of simple low order finite elements for large strain analysis of nearly incompressible solids. International Journal of Solids and Structures, 33(20-22):3277–3296, 1996.MathSciNetMATHCrossRef
Zurück zum Zitat T. Dickopf and R. Krause. Efficient simulation of multi-body contact problems on complex geometries: A flexible decomposition approach using constrained minimization. International Journal for Numerical Methods in Engineering, 77(13):1834–1862, 2009.MathSciNetMATHCrossRef T. Dickopf and R. Krause. Efficient simulation of multi-body contact problems on complex geometries: A flexible decomposition approach using constrained minimization. International Journal for Numerical Methods in Engineering, 77(13):1834–1862, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat R. Dimitri. Isogeometric treatment of large deformation contact and debonding problems with t-splines: a review. Curved and Layered Structures, 2(1), 2015. R. Dimitri. Isogeometric treatment of large deformation contact and debonding problems with t-splines: a review. Curved and Layered Structures, 2(1), 2015.
Zurück zum Zitat R. Dimitri, L. De Lorenzis, M. A. Scott, P. Wriggers, R. L. Taylor, and G. Zavarise. Isogeometric large deformation frictionless contact using T-splines. Computer Methods in Applied Mechanics and eEgineering, 269:394–414, 2014.MathSciNetMATHCrossRef R. Dimitri, L. De Lorenzis, M. A. Scott, P. Wriggers, R. L. Taylor, and G. Zavarise. Isogeometric large deformation frictionless contact using T-splines. Computer Methods in Applied Mechanics and eEgineering, 269:394–414, 2014.MathSciNetMATHCrossRef
Zurück zum Zitat M. Dittmann, M. Franke, I. Temizer, and C. Hesch. Isogeometric analysis and thermomechanical mortar contact problems. Computer Methods in Applied Mechanics and Engineering, 274:192–212, 2014.MathSciNetMATHCrossRef M. Dittmann, M. Franke, I. Temizer, and C. Hesch. Isogeometric analysis and thermomechanical mortar contact problems. Computer Methods in Applied Mechanics and Engineering, 274:192–212, 2014.MathSciNetMATHCrossRef
Zurück zum Zitat W. Dornisch, G. Vitucci, and S. Klinkel. The weak substitution method–an application of the mortar method for patch coupling in NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 103(3):205–234, 2015.MathSciNetMATHCrossRef W. Dornisch, G. Vitucci, and S. Klinkel. The weak substitution method–an application of the mortar method for patch coupling in NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 103(3):205–234, 2015.MathSciNetMATHCrossRef
Zurück zum Zitat H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. Journal of Computational Physics, 227(3):1790–1808, 2008.MathSciNetMATHCrossRef H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. Journal of Computational Physics, 227(3):1790–1808, 2008.MathSciNetMATHCrossRef
Zurück zum Zitat J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes. N-widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering, 198(21):1726–1741, 2009.MathSciNetMATHCrossRef J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes. N-widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering, 198(21):1726–1741, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat P. Farah, A. Popp, and W. A. Wall. Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Computational Mechanics, 55:209–228, 2015.MathSciNetMATHCrossRef P. Farah, A. Popp, and W. A. Wall. Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Computational Mechanics, 55:209–228, 2015.MathSciNetMATHCrossRef
Zurück zum Zitat P. Farah, M. Gitterle, W. A. Wall, and A. Popp. Computational wear and contact modeling for fretting analysis with isogeometric dual mortar methods. Key Engineering Materials, 681:1–18, 2016.CrossRef P. Farah, M. Gitterle, W. A. Wall, and A. Popp. Computational wear and contact modeling for fretting analysis with isogeometric dual mortar methods. Key Engineering Materials, 681:1–18, 2016.CrossRef
Zurück zum Zitat P. Farah, W. A. Wall, and A. Popp. An implicit finite wear contact formulation based on dual mortar methods. International Journal for Numerical Methods in Engineering, 111:325–353, 2017.MathSciNetCrossRef P. Farah, W. A. Wall, and A. Popp. An implicit finite wear contact formulation based on dual mortar methods. International Journal for Numerical Methods in Engineering, 111:325–353, 2017.MathSciNetCrossRef
Zurück zum Zitat K. A. Fischer and P. Wriggers. Frictionless 2D contact formulations for finite deformations based on the mortar method. Computational Mechanics, 36(3):226–244, 2005.MATHCrossRef K. A. Fischer and P. Wriggers. Frictionless 2D contact formulations for finite deformations based on the mortar method. Computational Mechanics, 36(3):226–244, 2005.MATHCrossRef
Zurück zum Zitat K. A. Fischer and P. Wriggers. Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Computer Methods in Applied Mechanics and Engineering, 195(37-40):5020–5036, 2006.MathSciNetMATHCrossRef K. A. Fischer and P. Wriggers. Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Computer Methods in Applied Mechanics and Engineering, 195(37-40):5020–5036, 2006.MathSciNetMATHCrossRef
Zurück zum Zitat B. Flemisch and B. I. Wohlmuth. Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Computer Methods in Applied Mechanics and Engineering, 196(8):1589–1602, 2007.MathSciNetMATHCrossRef B. Flemisch and B. I. Wohlmuth. Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Computer Methods in Applied Mechanics and Engineering, 196(8):1589–1602, 2007.MathSciNetMATHCrossRef
Zurück zum Zitat J. Foley. Computer graphics: Principles and practice. Addison-Wesley, 1997. J. Foley. Computer graphics: Principles and practice. Addison-Wesley, 1997.
Zurück zum Zitat A. Francavilla and O. C. Zienkiewicz. A note on numerical computation of elastic contact problems. International Journal for Numerical Methods in Engineering, 9(4):913–924, 1975.CrossRef A. Francavilla and O. C. Zienkiewicz. A note on numerical computation of elastic contact problems. International Journal for Numerical Methods in Engineering, 9(4):913–924, 1975.CrossRef
Zurück zum Zitat M. W. Gee. Effiziente Lösungsstrategien in der nichtlinearen Schalenmechanik. PhD thesis, Universität Stuttgart, 2004. M. W. Gee. Effiziente Lösungsstrategien in der nichtlinearen Schalenmechanik. PhD thesis, Universität Stuttgart, 2004.
Zurück zum Zitat M. W. Gee, C. T. Kelley, and R. B. Lehoucq. Pseudo-transient continuation for nonlinear transient elasticity. International Journal for Numerical Methods in Engineering, 78(10):1209–1219, 2009.MATHCrossRef M. W. Gee, C. T. Kelley, and R. B. Lehoucq. Pseudo-transient continuation for nonlinear transient elasticity. International Journal for Numerical Methods in Engineering, 78(10):1209–1219, 2009.MATHCrossRef
Zurück zum Zitat M. Gitterle. A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. PhD thesis, Technische Universität München, 2012. M. Gitterle. A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. PhD thesis, Technische Universität München, 2012.
Zurück zum Zitat M. Gitterle, A. Popp, M. W. Gee, and W. A. Wall. Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. International Journal for Numerical Methods in Engineering, 84(5):543–571, 2010.MathSciNetMATH M. Gitterle, A. Popp, M. W. Gee, and W. A. Wall. Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. International Journal for Numerical Methods in Engineering, 84(5):543–571, 2010.MathSciNetMATH
Zurück zum Zitat D. Großmann, B. Jüttler, H. Schlusnus, J. Barner, and A.-V. Vuong. Isogeometric simulation of turbine blades for aircraft engines. Computer Aided Geometric Design, 29(7):519–531, 2012.MathSciNetMATHCrossRef D. Großmann, B. Jüttler, H. Schlusnus, J. Barner, and A.-V. Vuong. Isogeometric simulation of turbine blades for aircraft engines. Computer Aided Geometric Design, 29(7):519–531, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat M. E. Gurtin. An introduction to continuum mechanics. Academic Press, 1981. M. E. Gurtin. An introduction to continuum mechanics. Academic Press, 1981.
Zurück zum Zitat C. Hager. Robust numerical algorithms for dynamic frictional contact problems with different time and space scales. PhD thesis, Universität Stuttgart, 2010. C. Hager. Robust numerical algorithms for dynamic frictional contact problems with different time and space scales. PhD thesis, Universität Stuttgart, 2010.
Zurück zum Zitat C. Hager and B. I. Wohlmuth. Nonlinear complementarity functions for plasticity problems with frictional contact. Computer Methods in Applied Mechanics and Engineering, 198(41-44):3411–3427, 2009.MathSciNetMATHCrossRef C. Hager and B. I. Wohlmuth. Nonlinear complementarity functions for plasticity problems with frictional contact. Computer Methods in Applied Mechanics and Engineering, 198(41-44):3411–3427, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat C. Hager, S. Hüeber, and B. I. Wohlmuth. A stable energy-conserving approach for frictional contact problems based on quadrature formulas. International Journal for Numerical Methods in Engineering, 73(2):205–225, 2008.MathSciNetMATHCrossRef C. Hager, S. Hüeber, and B. I. Wohlmuth. A stable energy-conserving approach for frictional contact problems based on quadrature formulas. International Journal for Numerical Methods in Engineering, 73(2):205–225, 2008.MathSciNetMATHCrossRef
Zurück zum Zitat J. O. Hallquist, G. L. Goudreau, and D. J. Benson. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 51(1-3):107–137, 1985.MathSciNetMATHCrossRef J. O. Hallquist, G. L. Goudreau, and D. J. Benson. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 51(1-3):107–137, 1985.MathSciNetMATHCrossRef
Zurück zum Zitat G. Hansen. A jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems. Journal of Computational Physics, 230(17):6546–6562, 2011.MathSciNetMATHCrossRef G. Hansen. A jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems. Journal of Computational Physics, 230(17):6546–6562, 2011.MathSciNetMATHCrossRef
Zurück zum Zitat S. Hartmann. Kontaktanalyse dünnwandiger Strukturen bei großen Deformationen. PhD thesis, Universität Stuttgart, 2007. S. Hartmann. Kontaktanalyse dünnwandiger Strukturen bei großen Deformationen. PhD thesis, Universität Stuttgart, 2007.
Zurück zum Zitat S. Hartmann, S. Brunssen, E. Ramm, and B. I. Wohlmuth. Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 70(8):883–912, 2007.MathSciNetMATHCrossRef S. Hartmann, S. Brunssen, E. Ramm, and B. I. Wohlmuth. Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 70(8):883–912, 2007.MathSciNetMATHCrossRef
Zurück zum Zitat S. Hartmann, J. Oliver, R. Weyler, J.C. Cante, and J.A. Hernandez. A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2607–2631, 2009.MathSciNetMATHCrossRef S. Hartmann, J. Oliver, R. Weyler, J.C. Cante, and J.A. Hernandez. A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2607–2631, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat H Hertz. Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92:156–171, 1882.MATH H Hertz. Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92:156–171, 1882.MATH
Zurück zum Zitat C. Hesch and P. Betsch. A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 77(10):1468–1500, 2009.MathSciNetMATHCrossRef C. Hesch and P. Betsch. A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 77(10):1468–1500, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat C. Hesch and P. Betsch. Transient three-dimensional domain decomposition problems: Frame-indifferent mortar constraints and conserving integration. International Journal for Numerical Methods in Engineering, 82(3):329–358, 2010.MathSciNetMATH C. Hesch and P. Betsch. Transient three-dimensional domain decomposition problems: Frame-indifferent mortar constraints and conserving integration. International Journal for Numerical Methods in Engineering, 82(3):329–358, 2010.MathSciNetMATH
Zurück zum Zitat C. Hesch and P. Betsch. Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Computational Mechanics, 48:461–475, 2011. ISSN 0178-7675.MATHCrossRef C. Hesch and P. Betsch. Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Computational Mechanics, 48:461–475, 2011. ISSN 0178-7675.MATHCrossRef
Zurück zum Zitat C. Hesch and P. Betsch. Isogeometric analysis and domain decomposition methods. Computer Methods in Applied Mechanics and Engineering, 213:104–112, 2012.MathSciNetMATHCrossRef C. Hesch and P. Betsch. Isogeometric analysis and domain decomposition methods. Computer Methods in Applied Mechanics and Engineering, 213:104–112, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat P. Hild. Numerical implementation of two nonconforming finite element methods for unilateral contact. Computer Methods in Applied Mechanics and Engineering, 184(1):99 – 123, 2000.MathSciNetMATHCrossRef P. Hild. Numerical implementation of two nonconforming finite element methods for unilateral contact. Computer Methods in Applied Mechanics and Engineering, 184(1):99 – 123, 2000.MathSciNetMATHCrossRef
Zurück zum Zitat M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semi-smooth Newton method. SIAM Journal on Optimization, 13(3):865–888, 2002.MathSciNetMATHCrossRef M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semi-smooth Newton method. SIAM Journal on Optimization, 13(3):865–888, 2002.MathSciNetMATHCrossRef
Zurück zum Zitat R. Holm. Electric contacts. Gebers, 1946. R. Holm. Electric contacts. Gebers, 1946.
Zurück zum Zitat G. A. Holzapfel. Nonlinear solid mechanics: A continuum approach for engineering. Wiley, 2000. G. A. Holzapfel. Nonlinear solid mechanics: A continuum approach for engineering. Wiley, 2000.
Zurück zum Zitat S. Hüeber. Discretization techniques and efficient algorithms for contact problems. PhD thesis, Universität Stuttgart, 2008. S. Hüeber. Discretization techniques and efficient algorithms for contact problems. PhD thesis, Universität Stuttgart, 2008.
Zurück zum Zitat S. Hüeber and B. I. Wohlmuth. A primal-dual active set strategy for non-linear multibody contact problems. Computer Methods in Applied Mechanics and Engineering, 194(27-29):3147–3166, 2005.MathSciNetMATHCrossRef S. Hüeber and B. I. Wohlmuth. A primal-dual active set strategy for non-linear multibody contact problems. Computer Methods in Applied Mechanics and Engineering, 194(27-29):3147–3166, 2005.MathSciNetMATHCrossRef
Zurück zum Zitat S. Hüeber and B. I. Wohlmuth. Thermo-mechanical contact problems on non-matching meshes. Computer Methods in Applied Mechanics and Engineering, 198(15–16):1338–1350, 2009.MATHCrossRef S. Hüeber and B. I. Wohlmuth. Thermo-mechanical contact problems on non-matching meshes. Computer Methods in Applied Mechanics and Engineering, 198(15–16):1338–1350, 2009.MATHCrossRef
Zurück zum Zitat S. Hüeber and B. I. Wohlmuth. Equilibration techniques for solving contact problems with Coulomb friction. Computer Methods in Applied Mechanics and Engineering, 205–208:29–45, 2012.MathSciNetMATHCrossRef S. Hüeber and B. I. Wohlmuth. Equilibration techniques for solving contact problems with Coulomb friction. Computer Methods in Applied Mechanics and Engineering, 205–208:29–45, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat S. Hüeber, G. Stadler, and B. I. Wohlmuth. A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM Journal on Scientific Computing, 30(2):572–596, 2008.MathSciNetMATHCrossRef S. Hüeber, G. Stadler, and B. I. Wohlmuth. A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM Journal on Scientific Computing, 30(2):572–596, 2008.MathSciNetMATHCrossRef
Zurück zum Zitat T. J. R. Hughes. The finite element method: linear static and dynamic finite element analysis. Dover Publications, 2000. T. J. R. Hughes. The finite element method: linear static and dynamic finite element analysis. Dover Publications, 2000.
Zurück zum Zitat T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and W. Kanoknukulchai. A finite element method for a class of contact-impact problems. Computer Methods in Applied Mechanics and Engineering, 8(3):249–276, 1976.MATHCrossRef T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and W. Kanoknukulchai. A finite element method for a class of contact-impact problems. Computer Methods in Applied Mechanics and Engineering, 8(3):249–276, 1976.MATHCrossRef
Zurück zum Zitat T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39):4135–4195, 2005.MathSciNetMATHCrossRef T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39):4135–4195, 2005.MathSciNetMATHCrossRef
Zurück zum Zitat A. Ibrahimbegovic and L. Chorfi. Covariant principal axis formulation of associated coupled thermoplasticity at finite strains and its numerical implementation. International Journal of Solids and Structures, 39(2):499–528, 2002.MATHCrossRef A. Ibrahimbegovic and L. Chorfi. Covariant principal axis formulation of associated coupled thermoplasticity at finite strains and its numerical implementation. International Journal of Solids and Structures, 39(2):499–528, 2002.MATHCrossRef
Zurück zum Zitat B. M. Irons. Numerical integration applied to finite element methods. In Proceedings Conference on the Use of Digital Computers in Structural Engineering. University of Newcastle, 1966. B. M. Irons. Numerical integration applied to finite element methods. In Proceedings Conference on the Use of Digital Computers in Structural Engineering. University of Newcastle, 1966.
Zurück zum Zitat L. Johansson and A. Klarbring. Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Computer Methods in Applied Mechanics and Engineering, 105(2):181–210, 1993.MathSciNetMATHCrossRef L. Johansson and A. Klarbring. Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Computer Methods in Applied Mechanics and Engineering, 105(2):181–210, 1993.MathSciNetMATHCrossRef
Zurück zum Zitat K. L. Johnson. Contact mechanics. Cambridge University Press, 1985. K. L. Johnson. Contact mechanics. Cambridge University Press, 1985.
Zurück zum Zitat F. Jourdan and A. Samida. An implicit numerical method for wear modeling applied to a hip joint prosthesis problem. Computer Methods in Applied Mechanics and Engineering, 198(27-29):2209 – 2217, 2009.MATHCrossRef F. Jourdan and A. Samida. An implicit numerical method for wear modeling applied to a hip joint prosthesis problem. Computer Methods in Applied Mechanics and Engineering, 198(27-29):2209 – 2217, 2009.MATHCrossRef
Zurück zum Zitat G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–95, 1998.CrossRef G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–95, 1998.CrossRef
Zurück zum Zitat A. R. Khoei, H. Saffar, and M. Eghbalian. An efficient thermo–mechanical contact algorithm for modeling contact–impact problems. Asian Journal of Civil Engineering, 16(5):681–708, 2015. A. R. Khoei, H. Saffar, and M. Eghbalian. An efficient thermo–mechanical contact algorithm for modeling contact–impact problems. Asian Journal of Civil Engineering, 16(5):681–708, 2015.
Zurück zum Zitat N. Kikuchi and J. T. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988.MATHCrossRef N. Kikuchi and J. T. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988.MATHCrossRef
Zurück zum Zitat J.-Y. Kim and S.-K. Youn. Isogeometric contact analysis using mortar method. International Journal for Numerical Methods in Engineering, 89(12):1559–1581, 2012.MathSciNetMATHCrossRef J.-Y. Kim and S.-K. Youn. Isogeometric contact analysis using mortar method. International Journal for Numerical Methods in Engineering, 89(12):1559–1581, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat T. M. Kindo, T. A. Laursen, and J. E. Dolbow. Toward robust and accurate contact solvers for large deformation applications: a remapping/adaptivity framework for mortar-based methods. Computational Mechanics, 54(1):53–70, 2014.MathSciNetMATHCrossRef T. M. Kindo, T. A. Laursen, and J. E. Dolbow. Toward robust and accurate contact solvers for large deformation applications: a remapping/adaptivity framework for mortar-based methods. Computational Mechanics, 54(1):53–70, 2014.MathSciNetMATHCrossRef
Zurück zum Zitat A. Konyukhov and K. Schweizerhof. On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry. Computer Methods in Applied Mechanics and Engineering, 197(33–40):3045–3056, 2008.MathSciNetMATHCrossRef A. Konyukhov and K. Schweizerhof. On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry. Computer Methods in Applied Mechanics and Engineering, 197(33–40):3045–3056, 2008.MathSciNetMATHCrossRef
Zurück zum Zitat R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, and T.J.R. Hughes. Isogeometric collocation for large deformation elasticity and frictional contact problems. Computer Methods in Applied Mechanics and Engineering, 296:73–112, 2015.MathSciNetCrossRef R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, and T.J.R. Hughes. Isogeometric collocation for large deformation elasticity and frictional contact problems. Computer Methods in Applied Mechanics and Engineering, 296:73–112, 2015.MathSciNetCrossRef
Zurück zum Zitat B. P. Lamichhane and B. I. Wohlmuth. Biorthogonal bases with local support and approximation properties. Mathematics of Computation, 76:233–249, 2007.MathSciNetMATHCrossRef B. P. Lamichhane and B. I. Wohlmuth. Biorthogonal bases with local support and approximation properties. Mathematics of Computation, 76:233–249, 2007.MathSciNetMATHCrossRef
Zurück zum Zitat B. P. Lamichhane, R. P. Stevenson, and B. I. Wohlmuth. Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numerische Mathematik, 102(1):93–121, 2005.MathSciNetMATHCrossRef B. P. Lamichhane, R. P. Stevenson, and B. I. Wohlmuth. Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numerische Mathematik, 102(1):93–121, 2005.MathSciNetMATHCrossRef
Zurück zum Zitat T. A. Laursen. Formulation and treatment of frictional contact problems using finite elements. PhD thesis, Stanford University, 1992. T. A. Laursen. Formulation and treatment of frictional contact problems using finite elements. PhD thesis, Stanford University, 1992.
Zurück zum Zitat T. A. Laursen. Computational contact and impact mechanics. Springer-Verlag Berlin Heidelberg, 2002.MATH T. A. Laursen. Computational contact and impact mechanics. Springer-Verlag Berlin Heidelberg, 2002.MATH
Zurück zum Zitat T. A. Laursen and V. Chawla. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 40(5):863–886, 1997.MathSciNetMATHCrossRef T. A. Laursen and V. Chawla. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 40(5):863–886, 1997.MathSciNetMATHCrossRef
Zurück zum Zitat T. A. Laursen and G. R. Love. Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering, 53(2):245–274, 2002.MathSciNetMATHCrossRef T. A. Laursen and G. R. Love. Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering, 53(2):245–274, 2002.MathSciNetMATHCrossRef
Zurück zum Zitat T. A. Laursen and J. C. Simo. A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems. International Journal for Numerical Methods in Engineering, 36(20):3451–3485, 1993.MathSciNetMATHCrossRef T. A. Laursen and J. C. Simo. A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems. International Journal for Numerical Methods in Engineering, 36(20):3451–3485, 1993.MathSciNetMATHCrossRef
Zurück zum Zitat T. A. Laursen, M. A. Puso, and J. Sanders. Mortar contact formulations for deformable-deformable contact: past contributions and new extensions for enriched and embedded interface formulations. Computer Methods in Applied Mechanics and Engineering, 205–208:3–15, 2012.MathSciNetMATHCrossRef T. A. Laursen, M. A. Puso, and J. Sanders. Mortar contact formulations for deformable-deformable contact: past contributions and new extensions for enriched and embedded interface formulations. Computer Methods in Applied Mechanics and Engineering, 205–208:3–15, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat J. Lengiewicz and S. Stupkiewicz. Continuum framework for finite element modelling of finite wear. Computer Methods in Applied Mechanics and Engineering, 205–208:178–188, 2012.MathSciNetMATHCrossRef J. Lengiewicz and S. Stupkiewicz. Continuum framework for finite element modelling of finite wear. Computer Methods in Applied Mechanics and Engineering, 205–208:178–188, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat J. Lengiewicz and S. Stupkiewicz. Efficient model of evolution of wear in quasi-steady-state sliding contacts. Wear, 303(12):611 – 621, 2013.CrossRef J. Lengiewicz and S. Stupkiewicz. Efficient model of evolution of wear in quasi-steady-state sliding contacts. Wear, 303(12):611 – 621, 2013.CrossRef
Zurück zum Zitat J. Lu. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact. Computer Methods in Applied Mechanics and Engineering, 200(5):726–741, 2011.MathSciNetMATHCrossRef J. Lu. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact. Computer Methods in Applied Mechanics and Engineering, 200(5):726–741, 2011.MathSciNetMATHCrossRef
Zurück zum Zitat J. E. Marsden and T. J. R. Hughes. Mathematical foundations of elasticity. Dover, 1994. J. E. Marsden and T. J. R. Hughes. Mathematical foundations of elasticity. Dover, 1994.
Zurück zum Zitat M. E. Matzen, T. Cichosz, and M. Bischoff. A point to segment contact formulation for isogeometric, NURBS based finite elements. Computer Methods in Applied Mechanics and Engineering, 255:27–39, 2013.MathSciNetMATHCrossRef M. E. Matzen, T. Cichosz, and M. Bischoff. A point to segment contact formulation for isogeometric, NURBS based finite elements. Computer Methods in Applied Mechanics and Engineering, 255:27–39, 2013.MathSciNetMATHCrossRef
Zurück zum Zitat I. R. McColl, J. Ding, and S. B. Leen. Finite element simulation and experimental validation of fretting wear. Wear, 256(11-12):1114 – 1127, 2004.CrossRef I. R. McColl, J. Ding, and S. B. Leen. Finite element simulation and experimental validation of fretting wear. Wear, 256(11-12):1114 – 1127, 2004.CrossRef
Zurück zum Zitat T. W. McDevitt and T. A. Laursen. A mortar-finite element formulation for frictional contact problems. International Journal for Numerical Methods in Engineering, 48(10):1525–1547, 2000.MathSciNetMATHCrossRef T. W. McDevitt and T. A. Laursen. A mortar-finite element formulation for frictional contact problems. International Journal for Numerical Methods in Engineering, 48(10):1525–1547, 2000.MathSciNetMATHCrossRef
Zurück zum Zitat H. C. Meng and K. C. Ludema. Wear models and predictive equations: their form and content. Wear, 181–183:443–457, 1995.CrossRef H. C. Meng and K. C. Ludema. Wear models and predictive equations: their form and content. Wear, 181–183:443–457, 1995.CrossRef
Zurück zum Zitat J. F. Molinari, M. Ortiz, R. Radovitzky, and E. A. Repetto. Finite element modeling of dry sliding wear in metals. Engineering Computations, 18(3/4):592–610, 2001.MATHCrossRef J. F. Molinari, M. Ortiz, R. Radovitzky, and E. A. Repetto. Finite element modeling of dry sliding wear in metals. Engineering Computations, 18(3/4):592–610, 2001.MATHCrossRef
Zurück zum Zitat V. G. Oancea and T. A. Laursen. A finite element formulation of thermomechanical rate-dependent frictional sliding. International Journal for Numerical Methods in Engineering, 40(23):4275–4311, 1997.MATHCrossRef V. G. Oancea and T. A. Laursen. A finite element formulation of thermomechanical rate-dependent frictional sliding. International Journal for Numerical Methods in Engineering, 40(23):4275–4311, 1997.MATHCrossRef
Zurück zum Zitat R. W. Ogden. Non-linear elastic deformations. Dover Publications, 1997. R. W. Ogden. Non-linear elastic deformations. Dover Publications, 1997.
Zurück zum Zitat J. Oliver, S. Hartmann, J. C. Cante, R. Weyler, and J. A. Hernandez. A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2591–2606, 2009.MathSciNetMATHCrossRef J. Oliver, S. Hartmann, J. C. Cante, R. Weyler, and J. A. Hernandez. A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2591–2606, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat M. Öqvist. Numerical simulations of mild wear using updated geometry with different step size approaches. Wear, 249(12):6–11, 2001.CrossRef M. Öqvist. Numerical simulations of mild wear using updated geometry with different step size approaches. Wear, 249(12):6–11, 2001.CrossRef
Zurück zum Zitat P. Oswald and B. Wohlmuth. On polynomial reproduction of dual FE bases. In Thirteenth International Conference on Domain Decomposition Methods, pages 85–96, 2001. P. Oswald and B. Wohlmuth. On polynomial reproduction of dual FE bases. In Thirteenth International Conference on Domain Decomposition Methods, pages 85–96, 2001.
Zurück zum Zitat P. Põdra and S. Andersson. Simulating sliding wear with finite element method. Tribology International, 32(2):71–81, 1999.CrossRef P. Põdra and S. Andersson. Simulating sliding wear with finite element method. Tribology International, 32(2):71–81, 1999.CrossRef
Zurück zum Zitat I. Páczelt and Z. Mróz. On optimal contact shapes generated by wear. International Journal for Numerical Methods in Engineering, 63(9):1250–1287, 2005.MathSciNetMATHCrossRef I. Páczelt and Z. Mróz. On optimal contact shapes generated by wear. International Journal for Numerical Methods in Engineering, 63(9):1250–1287, 2005.MathSciNetMATHCrossRef
Zurück zum Zitat I. Páczelt and Z. Mróz. Optimal shapes of contact interfaces due to sliding wear in the steady relative motion. International Journal of Solids and Structures, 44(34):895–925, 2007.MATHCrossRef I. Páczelt and Z. Mróz. Optimal shapes of contact interfaces due to sliding wear in the steady relative motion. International Journal of Solids and Structures, 44(34):895–925, 2007.MATHCrossRef
Zurück zum Zitat I. Páczelt, S. Kucharski, and Z. Mróz. The experimental and numerical analysis of quasi-steady wear processes for a sliding spherical indenter. Wear, 274-275:127–148, 2012.CrossRef I. Páczelt, S. Kucharski, and Z. Mróz. The experimental and numerical analysis of quasi-steady wear processes for a sliding spherical indenter. Wear, 274-275:127–148, 2012.CrossRef
Zurück zum Zitat D. Pantuso, K.-J. Bathe, and P. A. Bouzinov. A finite element procedure for the analysis of thermo-mechanical solids in contact. Computers & Structures, 75(6):551–573, 2000.CrossRef D. Pantuso, K.-J. Bathe, and P. A. Bouzinov. A finite element procedure for the analysis of thermo-mechanical solids in contact. Computers & Structures, 75(6):551–573, 2000.CrossRef
Zurück zum Zitat P. Papadopoulos and R. L. Taylor. A mixed formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 94(3):373–389, 1992.MATHCrossRef P. Papadopoulos and R. L. Taylor. A mixed formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 94(3):373–389, 1992.MATHCrossRef
Zurück zum Zitat C. Paulin, S. Fouvry, and C. Meunier. Finite element modelling of fretting wear surface evolution: Application to a Ti-6A1-4V contact. Wear, 264(12):26–36, 2008.CrossRef C. Paulin, S. Fouvry, and C. Meunier. Finite element modelling of fretting wear surface evolution: Application to a Ti-6A1-4V contact. Wear, 264(12):26–36, 2008.CrossRef
Zurück zum Zitat A. Popp. Mortar methods for computational contact mechanics and general interface problems. PhD thesis, Technische Universität München, 2012. A. Popp. Mortar methods for computational contact mechanics and general interface problems. PhD thesis, Technische Universität München, 2012.
Zurück zum Zitat A. Popp and W. A. Wall. Dual mortar methods for computational contact mechanics – overview and recent developments. GAMM-Mitteilungen, 37(1):66–84, 2014.MathSciNetMATHCrossRef A. Popp and W. A. Wall. Dual mortar methods for computational contact mechanics – overview and recent developments. GAMM-Mitteilungen, 37(1):66–84, 2014.MathSciNetMATHCrossRef
Zurück zum Zitat A. Popp, M. W. Gee, and W. A. Wall. A finite deformation mortar contact formulation using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 79(11):1354–1391, 2009.MathSciNetMATHCrossRef A. Popp, M. W. Gee, and W. A. Wall. A finite deformation mortar contact formulation using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 79(11):1354–1391, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat A. Popp, M. Gitterle, M. W. Gee, and W. A. Wall. A dual mortar approach for 3D finite deformation contact with consistent linearization. International Journal for Numerical Methods in Engineering, 83(11):1428–1465, 2010.MathSciNetMATHCrossRef A. Popp, M. Gitterle, M. W. Gee, and W. A. Wall. A dual mortar approach for 3D finite deformation contact with consistent linearization. International Journal for Numerical Methods in Engineering, 83(11):1428–1465, 2010.MathSciNetMATHCrossRef
Zurück zum Zitat A. Popp, B. I. Wohlmuth, M. W. Gee, and W. A. Wall. Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM Journal on Scientific Computing, 34:B421–B446, 2012.MathSciNetMATHCrossRef A. Popp, B. I. Wohlmuth, M. W. Gee, and W. A. Wall. Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM Journal on Scientific Computing, 34:B421–B446, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat A. Popp, A. Seitz, M. W. Gee, and W. A. Wall. A dual mortar approach for improved robustness and consistency of 3D contact algorithms. Computer Methods in Applied Mechanics and Engineering, 264:67–80, 2013.MathSciNetMATHCrossRef A. Popp, A. Seitz, M. W. Gee, and W. A. Wall. A dual mortar approach for improved robustness and consistency of 3D contact algorithms. Computer Methods in Applied Mechanics and Engineering, 264:67–80, 2013.MathSciNetMATHCrossRef
Zurück zum Zitat M. A. Puso. A 3D mortar method for solid mechanics. International Journal for Numerical Methods in Engineering, 59(3):315–336, 2004.MathSciNetMATHCrossRef M. A. Puso. A 3D mortar method for solid mechanics. International Journal for Numerical Methods in Engineering, 59(3):315–336, 2004.MathSciNetMATHCrossRef
Zurück zum Zitat M. A. Puso and T. A. Laursen. A 3D contact smoothing method using Gregory patches. International Journal for Numerical Methods in Engineering, 54(8):1161–1194, 2002.MathSciNetMATHCrossRef M. A. Puso and T. A. Laursen. A 3D contact smoothing method using Gregory patches. International Journal for Numerical Methods in Engineering, 54(8):1161–1194, 2002.MathSciNetMATHCrossRef
Zurück zum Zitat M. A. Puso and T. A. Laursen. A mortar segment-to-segment contact method for large deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193(6-8):601–629, 2004a.MATHCrossRef M. A. Puso and T. A. Laursen. A mortar segment-to-segment contact method for large deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193(6-8):601–629, 2004a.MATHCrossRef
Zurück zum Zitat M. A. Puso and T. A. Laursen. A mortar segment-to-segment frictional contact method for large deformations. Computer Methods in Applied Mechanics and Engineering, 193(45-47):4891–4913, 2004b.MathSciNetMATHCrossRef M. A. Puso and T. A. Laursen. A mortar segment-to-segment frictional contact method for large deformations. Computer Methods in Applied Mechanics and Engineering, 193(45-47):4891–4913, 2004b.MathSciNetMATHCrossRef
Zurück zum Zitat M. A. Puso, T. A. Laursen, and J. Solberg. A segment-to-segment mortar contact method for quadratic elements and large deformations. Computer Methods in Applied Mechanics and Engineering, 197(6-8):555–566, 2008.MathSciNetMATHCrossRef M. A. Puso, T. A. Laursen, and J. Solberg. A segment-to-segment mortar contact method for quadratic elements and large deformations. Computer Methods in Applied Mechanics and Engineering, 197(6-8):555–566, 2008.MathSciNetMATHCrossRef
Zurück zum Zitat E. Rabinowicz. Friction and wear of materials. Wiley, 1995. E. Rabinowicz. Friction and wear of materials. Wiley, 1995.
Zurück zum Zitat A. Reali and T. J. R. Hughes. An introduction to isogeometric collocation methods. In Isogeometric Methods for Numerical Simulation, pages 173–204. Springer, 2015.MATH A. Reali and T. J. R. Hughes. An introduction to isogeometric collocation methods. In Isogeometric Methods for Numerical Simulation, pages 173–204. Springer, 2015.MATH
Zurück zum Zitat J. N. Reddy. An introduction to nonlinear finite element analysis. Oxford University Press, 2004.CrossRef J. N. Reddy. An introduction to nonlinear finite element analysis. Oxford University Press, 2004.CrossRef
Zurück zum Zitat L. Rodríguez-Tembleque, R. Abascal, and M. H. Aliabadi. Anisotropic wear framework for 3d contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244:1–19, 2012.MathSciNetMATHCrossRef L. Rodríguez-Tembleque, R. Abascal, and M. H. Aliabadi. Anisotropic wear framework for 3d contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244:1–19, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat R. A. Sauer. Enriched contact finite elements for stable peeling computations. International Journal for Numerical Methods in Engineering, 87(6):593–616, 2011.MathSciNetMATHCrossRef R. A. Sauer. Enriched contact finite elements for stable peeling computations. International Journal for Numerical Methods in Engineering, 87(6):593–616, 2011.MathSciNetMATHCrossRef
Zurück zum Zitat R. A Sauer and L. De Lorenzis. An unbiased computational contact formulation for 3D friction. International Journal for Numerical Methods in Engineering, 101(4):251–280, 2015.MathSciNetMATHCrossRef R. A Sauer and L. De Lorenzis. An unbiased computational contact formulation for 3D friction. International Journal for Numerical Methods in Engineering, 101(4):251–280, 2015.MathSciNetMATHCrossRef
Zurück zum Zitat K. Schweizerhof and A. Konyukhov. Covariant description for frictional contact problems. Computational Mechanics, 35(3):190–213, 2005.MATHCrossRef K. Schweizerhof and A. Konyukhov. Covariant description for frictional contact problems. Computational Mechanics, 35(3):190–213, 2005.MATHCrossRef
Zurück zum Zitat L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation, 54:483–492, 1990.MathSciNetMATHCrossRef L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation, 54:483–492, 1990.MathSciNetMATHCrossRef
Zurück zum Zitat A. Seitz, A. Popp, and W. A Wall. A semi-smooth newton method for orthotropic plasticity and frictional contact at finite strains. Computer Methods in Applied Mechanics and Engineering, 285:228–254, 2015.MathSciNetCrossRef A. Seitz, A. Popp, and W. A Wall. A semi-smooth newton method for orthotropic plasticity and frictional contact at finite strains. Computer Methods in Applied Mechanics and Engineering, 285:228–254, 2015.MathSciNetCrossRef
Zurück zum Zitat A. Seitz, P. Farah, J. Kremheller, B. I Wohlmuth, W. A Wall, and A. Popp. Isogeometric dual mortar methods for computational contact mechanics. Computer Methods in Applied Mechanics and Engineering, 301:259–280, 2016.MathSciNetCrossRef A. Seitz, P. Farah, J. Kremheller, B. I Wohlmuth, W. A Wall, and A. Popp. Isogeometric dual mortar methods for computational contact mechanics. Computer Methods in Applied Mechanics and Engineering, 301:259–280, 2016.MathSciNetCrossRef
Zurück zum Zitat A. Seitz, W. A. Wall, and A. Popp. A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Advanced Modeling and Simulation in Engineering Sciences, 5:5, 2018.CrossRef A. Seitz, W. A. Wall, and A. Popp. A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Advanced Modeling and Simulation in Engineering Sciences, 5:5, 2018.CrossRef
Zurück zum Zitat I. Serre, M. Bonnet, and R. M. Pradeilles-Duval. Modelling an abrasive wear experiment by the boundary element method. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics, 329(11):803–808, 2001.CrossRef I. Serre, M. Bonnet, and R. M. Pradeilles-Duval. Modelling an abrasive wear experiment by the boundary element method. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics, 329(11):803–808, 2001.CrossRef
Zurück zum Zitat P. Seshaiyer and M. Suri. hp submeshing via non-conforming finite element methods. Computer Methods in Applied Mechanics and Engineering, 189(3):1011–1030, 2000.MathSciNetMATHCrossRef P. Seshaiyer and M. Suri. hp submeshing via non-conforming finite element methods. Computer Methods in Applied Mechanics and Engineering, 189(3):1011–1030, 2000.MathSciNetMATHCrossRef
Zurück zum Zitat G. K. Sfantos and M. H. Aliabadi. Wear simulation using an incremental sliding boundary element method. Wear, 260(9-10):1119 – 1128, 2006.CrossRef G. K. Sfantos and M. H. Aliabadi. Wear simulation using an incremental sliding boundary element method. Wear, 260(9-10):1119 – 1128, 2006.CrossRef
Zurück zum Zitat G. K. Sfantos and M. H. Aliabadi. A boundary element formulation for three-dimensional sliding wear simulation. Wear, 262(5-6):672 – 683, 2007.MATHCrossRef G. K. Sfantos and M. H. Aliabadi. A boundary element formulation for three-dimensional sliding wear simulation. Wear, 262(5-6):672 – 683, 2007.MATHCrossRef
Zurück zum Zitat J. C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Computer Methods in Applied Mechanics and Engineering, 66(2):199–219, 1988.MathSciNetMATHCrossRef J. C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Computer Methods in Applied Mechanics and Engineering, 66(2):199–219, 1988.MathSciNetMATHCrossRef
Zurück zum Zitat J. C. Simo and T. J. R. Hughes. Computational inelasticity. Springer, 1998. J. C. Simo and T. J. R. Hughes. Computational inelasticity. Springer, 1998.
Zurück zum Zitat J. C. Simo and T. A. Laursen. An augmented Lagrangian treatment of contact problems involving friction. Computers & Structures, 42(1):97–116, 1992.MathSciNetMATHCrossRef J. C. Simo and T. A. Laursen. An augmented Lagrangian treatment of contact problems involving friction. Computers & Structures, 42(1):97–116, 1992.MathSciNetMATHCrossRef
Zurück zum Zitat J. C. Simo, P. Wriggers, and R. L. Taylor. A perturbed Lagrangian formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 50(2):163–180, 1985.MathSciNetMATHCrossRef J. C. Simo, P. Wriggers, and R. L. Taylor. A perturbed Lagrangian formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 50(2):163–180, 1985.MathSciNetMATHCrossRef
Zurück zum Zitat J. C. Simo, N. Tarnow, and K. K. Wong. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 100(1):63–116, 1992.MathSciNetMATHCrossRef J. C. Simo, N. Tarnow, and K. K. Wong. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 100(1):63–116, 1992.MathSciNetMATHCrossRef
Zurück zum Zitat L. Stainier and M. Ortiz. Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity. International Journal of Solids and Structures, 47(5):705–715, 2010.MATHCrossRef L. Stainier and M. Ortiz. Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity. International Journal of Solids and Structures, 47(5):705–715, 2010.MATHCrossRef
Zurück zum Zitat N. Strömberg. An augmented lagrangian method for fretting problems. European Journal of Mechanics – A/Solids, 16:573–593, 1996.MathSciNetMATH N. Strömberg. An augmented lagrangian method for fretting problems. European Journal of Mechanics – A/Solids, 16:573–593, 1996.MathSciNetMATH
Zurück zum Zitat N. Strömberg, L. Johansson, and A. Klarbring. Derivation and analysis of a generalized standard model for contact, friction and wear. International Journal of Solids and Structures, 33(13):1817–1836, 1996.MathSciNetMATHCrossRef N. Strömberg, L. Johansson, and A. Klarbring. Derivation and analysis of a generalized standard model for contact, friction and wear. International Journal of Solids and Structures, 33(13):1817–1836, 1996.MathSciNetMATHCrossRef
Zurück zum Zitat S. Stupkiewicz. An ALE formulation for implicit time integration of quasi-steady-state wear problems. Computer Methods in Applied Mechanics and Engineering, 260:130–142, 2013.MathSciNetMATHCrossRef S. Stupkiewicz. An ALE formulation for implicit time integration of quasi-steady-state wear problems. Computer Methods in Applied Mechanics and Engineering, 260:130–142, 2013.MathSciNetMATHCrossRef
Zurück zum Zitat R. L. Taylor, J. C. Simo, O. C. Zienkiewicz, and A. C. H. Chan. The patch test: A condition for assessing FEM convergence. International Journal for Numerical Methods in Engineering, 22(1):39–62, 1986.MathSciNetMATHCrossRef R. L. Taylor, J. C. Simo, O. C. Zienkiewicz, and A. C. H. Chan. The patch test: A condition for assessing FEM convergence. International Journal for Numerical Methods in Engineering, 22(1):39–62, 1986.MathSciNetMATHCrossRef
Zurück zum Zitat I. Temizer. Multiscale thermomechanical contact: computational homogenization with isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(8):582–607, 2014.MathSciNetMATHCrossRef I. Temizer. Multiscale thermomechanical contact: computational homogenization with isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(8):582–607, 2014.MathSciNetMATHCrossRef
Zurück zum Zitat I. Temizer, P. Wriggers, and T. J. R. Hughes. Contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 200(9–12):1100–1112, 2011.MathSciNetMATHCrossRef I. Temizer, P. Wriggers, and T. J. R. Hughes. Contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 200(9–12):1100–1112, 2011.MathSciNetMATHCrossRef
Zurück zum Zitat I. Temizer, P. Wriggers, and T. J. R. Hughes. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 209–212:115–128, 2012.MathSciNetMATHCrossRef I. Temizer, P. Wriggers, and T. J. R. Hughes. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 209–212:115–128, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat S. P. Timoshenko and J. N. Goodier. Theory of elasticity. McGraw-Hill, 1970. S. P. Timoshenko and J. N. Goodier. Theory of elasticity. McGraw-Hill, 1970.
Zurück zum Zitat M. Tur, F. J. Fuenmayor, and P. Wriggers. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 198(37-40):2860–2873, 2009.MathSciNetMATHCrossRef M. Tur, F. J. Fuenmayor, and P. Wriggers. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 198(37-40):2860–2873, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat M. Tur, E. Giner, F.J. Fuenmayor, and P. Wriggers. 2d contact smooth formulation based on the mortar method. Computer Methods in Applied Mechanics and Engineering, 247-248:1–14, 2012.MathSciNetMATHCrossRef M. Tur, E. Giner, F.J. Fuenmayor, and P. Wriggers. 2d contact smooth formulation based on the mortar method. Computer Methods in Applied Mechanics and Engineering, 247-248:1–14, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat R. Unger, M. C. Haupt, and P. Horst. Application of Lagrange multipliers for coupled problems in fluid and structural interactions. Computers & Structures, 85(11-14):796–809, 2007.MathSciNetCrossRef R. Unger, M. C. Haupt, and P. Horst. Application of Lagrange multipliers for coupled problems in fluid and structural interactions. Computers & Structures, 85(11-14):796–809, 2007.MathSciNetCrossRef
Zurück zum Zitat J. R. Williams and R. O’Connor. Discrete element simulation and the contact problem. Archives of Computational Methods in Engineering, 6(4):279–304, 1999.MathSciNetCrossRef J. R. Williams and R. O’Connor. Discrete element simulation and the contact problem. Archives of Computational Methods in Engineering, 6(4):279–304, 1999.MathSciNetCrossRef
Zurück zum Zitat B. I. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis, 38(3):989–1012, 2000.MathSciNetMATHCrossRef B. I. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis, 38(3):989–1012, 2000.MathSciNetMATHCrossRef
Zurück zum Zitat B. I. Wohlmuth. Discretization methods and iterative solvers based on domain decomposition. Springer-Verlag Berlin Heidelberg, 2001.MATHCrossRef B. I. Wohlmuth. Discretization methods and iterative solvers based on domain decomposition. Springer-Verlag Berlin Heidelberg, 2001.MATHCrossRef
Zurück zum Zitat B. I. Wohlmuth. Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica, 20:569–734, 2011.MathSciNetMATHCrossRef B. I. Wohlmuth. Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica, 20:569–734, 2011.MathSciNetMATHCrossRef
Zurück zum Zitat B. I. Wohlmuth, A. Popp, M. W. Gee, and W. A. Wall. An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Computational Mechanics, 49:735–747, 2012.MathSciNetMATHCrossRef B. I. Wohlmuth, A. Popp, M. W. Gee, and W. A. Wall. An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Computational Mechanics, 49:735–747, 2012.MathSciNetMATHCrossRef
Zurück zum Zitat P. Wriggers. Computational contact mechanics. Springer-Verlag Berlin Heidelberg, 2006.MATHCrossRef P. Wriggers. Computational contact mechanics. Springer-Verlag Berlin Heidelberg, 2006.MATHCrossRef
Zurück zum Zitat P. Wriggers and C. Miehe. Contact constraints within coupled thermomechanical analysis - a finite element model. Computer Methods in Applied Mechanics and Engineering, 113(3):301–319, 1994.MathSciNetMATHCrossRef P. Wriggers and C. Miehe. Contact constraints within coupled thermomechanical analysis - a finite element model. Computer Methods in Applied Mechanics and Engineering, 113(3):301–319, 1994.MathSciNetMATHCrossRef
Zurück zum Zitat P. Wriggers and O. Scherf. An adaptive finite element algorithm for contact problems in plasticity. Computational Mechanics, 17(1):88–97, 1995.MATHCrossRef P. Wriggers and O. Scherf. An adaptive finite element algorithm for contact problems in plasticity. Computational Mechanics, 17(1):88–97, 1995.MATHCrossRef
Zurück zum Zitat P. Wriggers and G. Zavarise. On contact between three-dimensional beams undergoing large deflections. Communications in Numerical Methods in Engineering, 13(6):429–438, 1997.MathSciNetMATHCrossRef P. Wriggers and G. Zavarise. On contact between three-dimensional beams undergoing large deflections. Communications in Numerical Methods in Engineering, 13(6):429–438, 1997.MathSciNetMATHCrossRef
Zurück zum Zitat P. Wriggers, T. Vu Van, and E. Stein. Finite element formulation of large deformation impact-contact problems with friction. Computers & Structures, 37(3):319–331, 1990.MATHCrossRef P. Wriggers, T. Vu Van, and E. Stein. Finite element formulation of large deformation impact-contact problems with friction. Computers & Structures, 37(3):319–331, 1990.MATHCrossRef
Zurück zum Zitat P. Wriggers, L. Krstulovic-Opara, and J. Korelc. Smooth C1-interpolations for two-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering, 51(12):1469–1495, 2001.MathSciNetMATHCrossRef P. Wriggers, L. Krstulovic-Opara, and J. Korelc. Smooth C1-interpolations for two-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering, 51(12):1469–1495, 2001.MathSciNetMATHCrossRef
Zurück zum Zitat H. L. Xing and A. Makinouchi. Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy. Computer Methods in Applied Mechanics and Engineering, 191(37):4193–4214, 2002.MATHCrossRef H. L. Xing and A. Makinouchi. Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy. Computer Methods in Applied Mechanics and Engineering, 191(37):4193–4214, 2002.MATHCrossRef
Zurück zum Zitat B. Yang and T. A. Laursen. A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Computational Mechanics, 41(2):189–205, 2008.MathSciNetMATHCrossRef B. Yang and T. A. Laursen. A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Computational Mechanics, 41(2):189–205, 2008.MathSciNetMATHCrossRef
Zurück zum Zitat B. Yang and T. A. Laursen. A mortar-finite element approach to lubricated contact problems. Computer Methods in Applied Mechanics and Engineering, 198(47-48):3656–3669, 2009.MathSciNetMATHCrossRef B. Yang and T. A. Laursen. A mortar-finite element approach to lubricated contact problems. Computer Methods in Applied Mechanics and Engineering, 198(47-48):3656–3669, 2009.MathSciNetMATHCrossRef
Zurück zum Zitat B. Yang, Tod A. Laursen, and X. Meng. Two dimensional mortar contact methods for large deformation frictional sliding. International Journal for Numerical Methods in Engineering, 62(9):1183–1225, 2005.MathSciNetMATHCrossRef B. Yang, Tod A. Laursen, and X. Meng. Two dimensional mortar contact methods for large deformation frictional sliding. International Journal for Numerical Methods in Engineering, 62(9):1183–1225, 2005.MathSciNetMATHCrossRef
Zurück zum Zitat Q. Yang, L. Stainier, and M. Ortiz. A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. Journal of the Mechanics and Physics of Solids, 54(2):401–424, 2006.MathSciNetMATHCrossRef Q. Yang, L. Stainier, and M. Ortiz. A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. Journal of the Mechanics and Physics of Solids, 54(2):401–424, 2006.MathSciNetMATHCrossRef
Zurück zum Zitat G. Zavarise and P. Wriggers. Contact with friction between beams in 3-D space. International Journal for Numerical Methods in Engineering, 49(8):977–1006, 2000.MATHCrossRef G. Zavarise and P. Wriggers. Contact with friction between beams in 3-D space. International Journal for Numerical Methods in Engineering, 49(8):977–1006, 2000.MATHCrossRef
Zurück zum Zitat G. Zavarise, P. Wriggers, E. Stein, and B. A. Schrefler. Real contact mechanisms and finite element formulation - a coupled thermomechanical approach. International Journal for Numerical Methods in Engineering, 35(4):767–785, 1992.MATHCrossRef G. Zavarise, P. Wriggers, E. Stein, and B. A. Schrefler. Real contact mechanisms and finite element formulation - a coupled thermomechanical approach. International Journal for Numerical Methods in Engineering, 35(4):767–785, 1992.MATHCrossRef
Zurück zum Zitat O. C. Zienkiewicz and R. L. Taylor. The finite element method for solid and structural mechanics. Elsevier Butterworth-Heinemann, 2005. O. C. Zienkiewicz and R. L. Taylor. The finite element method for solid and structural mechanics. Elsevier Butterworth-Heinemann, 2005.
Zurück zum Zitat O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method: Its basis & fundamentals. Elsevier Butterworth-Heinemann, 2005. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method: Its basis & fundamentals. Elsevier Butterworth-Heinemann, 2005.
Metadaten
Titel
State-of-the-Art Computational Methods for Finite Deformation Contact Modeling of Solids and Structures
verfasst von
Alexander Popp
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-90155-8_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.