Skip to main content
Erschienen in: Journal of Materials Science 17/2018

05.06.2018 | Energy materials

The pursuit of optimal sodium ions prestoring in potassium–sodium–cobalt hexacyanoferrate: toward high discharge performance supercapacitors

verfasst von: Youhuan Zhu, Pengpeng Chen, Yifeng Zhou, Wangyan Nie, Ying Xu

Erschienen in: Journal of Materials Science | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Prestoring sodium, which introducing sodium element into the crystal structure of material in the process of synthesis, is a novel approach to enhance the performance of material. Besides, crystal structure is also an important factor that influences the capacity of Prussian blue analogues’ energy storage. In this work, the crystal structures of potassium–sodium–cobalt hexacyanoferrates (KNHCFs) were tuned by prestoring various content of sodium element. It has been discovered that the supercapacitors with KNHCF-0.5 (K1.7Na0.27Co[Fe(CN)6]0.71·1.6H2O) material reached highest performance with rhombohedral structure, showed optimal energy density (60 Wh kg−1), power density (10.8 kW kg−1) and long cycling performance of 92.3% capacitance retention even after 2000 cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Yue Y, Binder AJ, Guo B, Zhang Z, Qiao ZA, Tian C, Dai S (2014) Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew Chem Int Ed 53:3134–3137CrossRef Yue Y, Binder AJ, Guo B, Zhang Z, Qiao ZA, Tian C, Dai S (2014) Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew Chem Int Ed 53:3134–3137CrossRef
2.
Zurück zum Zitat Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, Toney MF, Cui Y (2014) Full open-framework batteries for stationary energy storage. Nat Commun 5:3007–3015CrossRef Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, Toney MF, Cui Y (2014) Full open-framework batteries for stationary energy storage. Nat Commun 5:3007–3015CrossRef
3.
Zurück zum Zitat Lee H, Kim YI, Park JK, Choi JW (2012) Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem Commun 48:8416–8418CrossRef Lee H, Kim YI, Park JK, Choi JW (2012) Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem Commun 48:8416–8418CrossRef
4.
Zurück zum Zitat Lu K, Song B, Gao X, Dai HX, Zhang JT, Ma HY (2016) High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J Power Sources 303:347–353CrossRef Lu K, Song B, Gao X, Dai HX, Zhang JT, Ma HY (2016) High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J Power Sources 303:347–353CrossRef
5.
Zurück zum Zitat Lu K, Li D, Gao X, Dai HX, Wang N, Ma HY (2015) An advanced aqueous sodium-ion supercapacitor with a manganese hexacyanoferrate cathode and a Fe3O4/rGO anode. J Mater Chem A 3:16013–16019CrossRef Lu K, Li D, Gao X, Dai HX, Wang N, Ma HY (2015) An advanced aqueous sodium-ion supercapacitor with a manganese hexacyanoferrate cathode and a Fe3O4/rGO anode. J Mater Chem A 3:16013–16019CrossRef
6.
Zurück zum Zitat Wang Y, Zhong H, Hu L, Yan N, Hu HB, Chen QW (2013) Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. J Mater Chem A 1:2621–2630CrossRef Wang Y, Zhong H, Hu L, Yan N, Hu HB, Chen QW (2013) Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. J Mater Chem A 1:2621–2630CrossRef
7.
Zurück zum Zitat Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48:6544–6546CrossRef Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48:6544–6546CrossRef
8.
Zurück zum Zitat Wang Y, Chen QW (2014) Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect. ACS Appl Mater Interfaces 6:6196–6201CrossRef Wang Y, Chen QW (2014) Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect. ACS Appl Mater Interfaces 6:6196–6201CrossRef
9.
Zurück zum Zitat Zhao FP, Wang YY, Xu XN, Liu YL, Song R, Lu G, Li YG (2014) Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl Mater Interfaces 6:11007–11012CrossRef Zhao FP, Wang YY, Xu XN, Liu YL, Song R, Lu G, Li YG (2014) Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl Mater Interfaces 6:11007–11012CrossRef
10.
Zurück zum Zitat Wu XY, Wu CH, Wei CX, Hu L, Qian JF, Cao YL, Ai XP, Wang JL, Yang HX (2016) Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl Mater Interfaces 8:5393–5399CrossRef Wu XY, Wu CH, Wei CX, Hu L, Qian JF, Cao YL, Ai XP, Wang JL, Yang HX (2016) Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl Mater Interfaces 8:5393–5399CrossRef
11.
Zurück zum Zitat You Y, Yu XQ, Yin YX, Nam KW, Guo YG (2015) Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res 8:117–128CrossRef You Y, Yu XQ, Yin YX, Nam KW, Guo YG (2015) Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res 8:117–128CrossRef
12.
Zurück zum Zitat Liu Y, He DD, Han RM, Wei GY, Qiao Y (2017) Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries. Chem Commun 53:5569–5572CrossRef Liu Y, He DD, Han RM, Wei GY, Qiao Y (2017) Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries. Chem Commun 53:5569–5572CrossRef
13.
Zurück zum Zitat Wu XY, Deng WW, Qian JF, Cao YL, Ai XP, Yang HX (2013) Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J Mater Chem A 1:10130–10134CrossRef Wu XY, Deng WW, Qian JF, Cao YL, Ai XP, Yang HX (2013) Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J Mater Chem A 1:10130–10134CrossRef
14.
Zurück zum Zitat Yun J, Pfisterer J, Bandarenka AS (2016) How simple are the models of Na intercalation in aqueous media? Energy Environ Sci 9:955–961CrossRef Yun J, Pfisterer J, Bandarenka AS (2016) How simple are the models of Na intercalation in aqueous media? Energy Environ Sci 9:955–961CrossRef
15.
Zurück zum Zitat Yu SL, Li Y, Lu YH, Xu B, Wang QT, Yan M, Jiang YZ (2015) A promising cathode material of sodium iron-nickle hexacyanoferrate for sodium ion batteries. J Power Sources 275:45–49CrossRef Yu SL, Li Y, Lu YH, Xu B, Wang QT, Yan M, Jiang YZ (2015) A promising cathode material of sodium iron-nickle hexacyanoferrate for sodium ion batteries. J Power Sources 275:45–49CrossRef
16.
Zurück zum Zitat Yan XM, Yang Y, Liu EL, Sun LQ, Wang H, Liao XZ, He YS, Ma ZF (2017) Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range. Electrochem Acta 225:235–243CrossRef Yan XM, Yang Y, Liu EL, Sun LQ, Wang H, Liao XZ, He YS, Ma ZF (2017) Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range. Electrochem Acta 225:235–243CrossRef
17.
Zurück zum Zitat Xie M, Xu MH, Huang YX, Chen RJ, Zhang XX, Li L, Wu F (2015) Na2NixCo1−xFe(CN)6: a class of Prussian blue analogs with transition metal elements are cathode materials for sodium ion batteries. Electrochem Commun 59:91–94CrossRef Xie M, Xu MH, Huang YX, Chen RJ, Zhang XX, Li L, Wu F (2015) Na2NixCo1−xFe(CN)6: a class of Prussian blue analogs with transition metal elements are cathode materials for sodium ion batteries. Electrochem Commun 59:91–94CrossRef
18.
Zurück zum Zitat Liu Y, He DD, Han RM, Wei GY, Qiao Y (2012) Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries. Chem Commun 53:5569–5572CrossRef Liu Y, He DD, Han RM, Wei GY, Qiao Y (2012) Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries. Chem Commun 53:5569–5572CrossRef
19.
Zurück zum Zitat Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough JB (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed 52:1964–1967CrossRef Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough JB (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed 52:1964–1967CrossRef
20.
Zurück zum Zitat Ohkoshi SI, Tokoro H, Utsunomiya M, Mizuno M, Abe M, Hashimoto K (2002) Observation of spin transition in an octahedrally coordinated manganese(II) compound. J Phys Chem B 106:2423–2425CrossRef Ohkoshi SI, Tokoro H, Utsunomiya M, Mizuno M, Abe M, Hashimoto K (2002) Observation of spin transition in an octahedrally coordinated manganese(II) compound. J Phys Chem B 106:2423–2425CrossRef
21.
Zurück zum Zitat Matsuda T, Kim J, Moritomo Y (2010) Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange. J Am Chem Soc 132:12206–12207CrossRef Matsuda T, Kim J, Moritomo Y (2010) Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange. J Am Chem Soc 132:12206–12207CrossRef
22.
Zurück zum Zitat Escax V, Bleuzen A, Cartier dit Moulin C, Villain F, Goujon A, Varret F, Verdaguer M (2001) Photoinduced ferrimagnetic systems in Prussian blue analogues C x I Co4[Fe(CN)6]y (CI = Alkali Cation). 3. Control of the photo- and thermally induced electron transfer by the [Fe(CN)6] vacancies in cesium derivatives. J Am Chem Soc 123:12536–12543CrossRef Escax V, Bleuzen A, Cartier dit Moulin C, Villain F, Goujon A, Varret F, Verdaguer M (2001) Photoinduced ferrimagnetic systems in Prussian blue analogues C x I Co4[Fe(CN)6]y (CI = Alkali Cation). 3. Control of the photo- and thermally induced electron transfer by the [Fe(CN)6] vacancies in cesium derivatives. J Am Chem Soc 123:12536–12543CrossRef
23.
Zurück zum Zitat Zhang W, Zhao YY, Malgras V, Ji QM, Jiang DM, Qi RJ, Ariga K, Yamauchi Y, Liu J, Jiang JS, Hu M (2016) Synthesis of monocrystalline nanoframes of Prussian blue analogues by controlled preferential etching. Angew Chem Int Ed 128:8368–8374CrossRef Zhang W, Zhao YY, Malgras V, Ji QM, Jiang DM, Qi RJ, Ariga K, Yamauchi Y, Liu J, Jiang JS, Hu M (2016) Synthesis of monocrystalline nanoframes of Prussian blue analogues by controlled preferential etching. Angew Chem Int Ed 128:8368–8374CrossRef
24.
Zurück zum Zitat Liu Y, Qian Y, Zhang WX, Li Z, Ji X, Miao L, Yuan LX, Hu XL, Huang YH (2015) Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 12:386–393CrossRef Liu Y, Qian Y, Zhang WX, Li Z, Ji X, Miao L, Yuan LX, Hu XL, Huang YH (2015) Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 12:386–393CrossRef
25.
Zurück zum Zitat Pang MJ, Long GH, Jiang S, Ji Y, Han W, Wang B, Liu XL, Xi YL (2015) Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor. Mater Sci Eng B 194:41–47CrossRef Pang MJ, Long GH, Jiang S, Ji Y, Han W, Wang B, Liu XL, Xi YL (2015) Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor. Mater Sci Eng B 194:41–47CrossRef
Metadaten
Titel
The pursuit of optimal sodium ions prestoring in potassium–sodium–cobalt hexacyanoferrate: toward high discharge performance supercapacitors
verfasst von
Youhuan Zhu
Pengpeng Chen
Yifeng Zhou
Wangyan Nie
Ying Xu
Publikationsdatum
05.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2528-5

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science 17/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.