Skip to main content

2018 | OriginalPaper | Buchkapitel

Spiral Wave Drift Induced by High-Frequency Forcing. Parallel Simulation in the Luo–Rudy Anisotropic Model of Cardiac Tissue

verfasst von : Timofei Epanchintsev, Sergei Pravdin, Alexander Panfilov

Erschienen in: Computational Science – ICCS 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Non-linear waves occur in various physical, chemical and biological media. One of the most important examples is electrical excitation waves in the myocardium, which initiate contraction of the heart. Abnormal wave propagation in the heart, such as the formation of spiral waves, causes dangerous arrhythmias, and thus methods of elimination of such waves are of great interest. One of the most promising methods is so-called low-voltage cardioversion and defibrillation, which is believed to be achieved by inducing the drift and disappearance of spiral waves using external high-frequency electrical stimulation of the heart. In this paper, we perform a computational analysis of the interaction of spiral waves and trains of high-frequency plane waves in 2D models of cardiac tissue. We investigate the effectiveness and safety of the treatment. We also identify the dependency of drift velocity on the period of plane waves. The simulations were carried out using a parallel computing system with OpenMP technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7(3), 293–301 (1996)CrossRef Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7(3), 293–301 (1996)CrossRef
2.
Zurück zum Zitat Caldwell, B.J., Trew, M.L., Pertsov, A.M.: Cardiac response to low-energy field pacing challenges the standard theory of defibrillation. Circ. Arrhythm. Electrophysiol. 8(3), 685–693 (2004)CrossRef Caldwell, B.J., Trew, M.L., Pertsov, A.M.: Cardiac response to low-energy field pacing challenges the standard theory of defibrillation. Circ. Arrhythm. Electrophysiol. 8(3), 685–693 (2004)CrossRef
3.
Zurück zum Zitat Epanchintsev, T., Pravdin, S., Sozykin, A., Panfilov, A.: Simulation of overdrive pacing in 2D phenomenological models of anisotropic myocardium. Procedia Comput. Sci. 119, 245–254 (2017). Proceedings of the 6th International Young Scientists Conference in HPC and Simulation YSC 2017. Elsevier B.V., KotkaCrossRef Epanchintsev, T., Pravdin, S., Sozykin, A., Panfilov, A.: Simulation of overdrive pacing in 2D phenomenological models of anisotropic myocardium. Procedia Comput. Sci. 119, 245–254 (2017). Proceedings of the 6th International Young Scientists Conference in HPC and Simulation YSC 2017. Elsevier B.V., KotkaCrossRef
4.
Zurück zum Zitat Ermakova, E.A., Krinsky, V.I., Panfilov, A.V., Pertsov, A.M.: Interaction between spiral and flat periodic autowaves in an active medium. Biofizika 31(2), 318–323 (1986). (in Russian) Ermakova, E.A., Krinsky, V.I., Panfilov, A.V., Pertsov, A.M.: Interaction between spiral and flat periodic autowaves in an active medium. Biofizika 31(2), 318–323 (1986). (in Russian)
5.
Zurück zum Zitat Fenton, F., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos: Interdisc. J. Nonlinear Sci. 8(1), 20–47 (1998)CrossRef Fenton, F., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos: Interdisc. J. Nonlinear Sci. 8(1), 20–47 (1998)CrossRef
6.
Zurück zum Zitat Gottwald, G., Pumir, A., Krinsky, V.: Spiral wave drift induced by stimulating wave trains. Chaos: Interdisc. J. Nonlinear Sci. 11(3), 487–494 (2001)CrossRef Gottwald, G., Pumir, A., Krinsky, V.: Spiral wave drift induced by stimulating wave trains. Chaos: Interdisc. J. Nonlinear Sci. 11(3), 487–494 (2001)CrossRef
7.
Zurück zum Zitat Hornung, D., Biktashev, V.N., Otani, N.F., Shajahan, T.K., Baig, T., Berg, S., Han, S., Krinsky, V.I., Luther, S.: Mechanisms of vortices termination in the cardiac muscle. R. Soc. Open Sci. 4(3), 170024 (2017)MathSciNetCrossRef Hornung, D., Biktashev, V.N., Otani, N.F., Shajahan, T.K., Baig, T., Berg, S., Han, S., Krinsky, V.I., Luther, S.: Mechanisms of vortices termination in the cardiac muscle. R. Soc. Open Sci. 4(3), 170024 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat Keener, J.P., Panfilov, A.V.: A biophysical model for defibrillation of cardiac tissue. Biophys. J. 71(3), 1335–45 (1996)CrossRef Keener, J.P., Panfilov, A.V.: A biophysical model for defibrillation of cardiac tissue. Biophys. J. 71(3), 1335–45 (1996)CrossRef
9.
Zurück zum Zitat Kheowan, O.-U., Chan, C.-K., Zykov, V.S., Rangsiman, O., Müller, S.C.: Spiral wave dynamics under feedback derived from a confined circular domain. Phys. Rev. E 64, 035201 (2001)CrossRef Kheowan, O.-U., Chan, C.-K., Zykov, V.S., Rangsiman, O., Müller, S.C.: Spiral wave dynamics under feedback derived from a confined circular domain. Phys. Rev. E 64, 035201 (2001)CrossRef
10.
Zurück zum Zitat Krinsky, V.I., Agladze, K.I.: Interaction of rotating waves in an active chemical medium. Phys. D 8(1), 50–56 (1983)CrossRef Krinsky, V.I., Agladze, K.I.: Interaction of rotating waves in an active chemical medium. Phys. D 8(1), 50–56 (1983)CrossRef
11.
Zurück zum Zitat Li, W., Ripplinger, C.M., Lou, Q., Efimov, I.R.: Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction. Heart Rhythm 6(7), 1020–1027 (2009)CrossRef Li, W., Ripplinger, C.M., Lou, Q., Efimov, I.R.: Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction. Heart Rhythm 6(7), 1020–1027 (2009)CrossRef
12.
Zurück zum Zitat Luo, C.H., Rudy, Y.: A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)CrossRef Luo, C.H., Rudy, Y.: A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)CrossRef
13.
Zurück zum Zitat Markhasin, V.S., Solovyova, O., Katsnelson, L.B., Protsenko, Y., Kohl, P., Noble, D.: Mechano-electric interactions in heterogeneous myocardium: development of fundamental experimental and theoretical models. Prog. Biophys. Mol. Biol. 82(1), 207–220 (2003)CrossRef Markhasin, V.S., Solovyova, O., Katsnelson, L.B., Protsenko, Y., Kohl, P., Noble, D.: Mechano-electric interactions in heterogeneous myocardium: development of fundamental experimental and theoretical models. Prog. Biophys. Mol. Biol. 82(1), 207–220 (2003)CrossRef
14.
Zurück zum Zitat Mena, A., Ferrero, J.M., Rodriguez, J.F.: Computer simulation of the electric activity of the heart using GPU. A multi-scale approach. In: Proceedings of the 41st International Congress on Electrophysiology ICE 2014, Bratislava, Slovakia (2014) Mena, A., Ferrero, J.M., Rodriguez, J.F.: Computer simulation of the electric activity of the heart using GPU. A multi-scale approach. In: Proceedings of the 41st International Congress on Electrophysiology ICE 2014, Bratislava, Slovakia (2014)
15.
Zurück zum Zitat Nakazawa, K., Suzuki, T., Ashihara, T., Inagaki, M., Namba, T., Ikeda, T., Suzuki, R.: Computational analysis and visualization of spiral wave reentry in a virtual heart model. In: Yamaguchi, T. (ed.) Clinical Application of Computational Mechanics to the Cardiovascular System, pp. 217–241. Springer, Tokyo (2000). https://doi.org/10.1007/978-4-431-67921-9_21CrossRef Nakazawa, K., Suzuki, T., Ashihara, T., Inagaki, M., Namba, T., Ikeda, T., Suzuki, R.: Computational analysis and visualization of spiral wave reentry in a virtual heart model. In: Yamaguchi, T. (ed.) Clinical Application of Computational Mechanics to the Cardiovascular System, pp. 217–241. Springer, Tokyo (2000). https://​doi.​org/​10.​1007/​978-4-431-67921-9_​21CrossRef
16.
Zurück zum Zitat Pravdin, S.F., Dierckx, H., Panfilov, A.V.: Effect of the form and anisotropy of the left ventricle on the drift of spiral waves. Biophysics 62(2), 309–311 (2017)CrossRef Pravdin, S.F., Dierckx, H., Panfilov, A.V.: Effect of the form and anisotropy of the left ventricle on the drift of spiral waves. Biophysics 62(2), 309–311 (2017)CrossRef
17.
Zurück zum Zitat Pravdin, S., Ushenin, K., Sozykin, A., Solovyova, O.: Human heart simulation software for parallel computing systems. Procedia Comput. Sci. 66(Suppl. C), 402–411 (2015). 4th International Young Scientist Conference on Computational ScienceCrossRef Pravdin, S., Ushenin, K., Sozykin, A., Solovyova, O.: Human heart simulation software for parallel computing systems. Procedia Comput. Sci. 66(Suppl. C), 402–411 (2015). 4th International Young Scientist Conference on Computational ScienceCrossRef
18.
Zurück zum Zitat Pravdin, S.F., Nezlobinsky, T.V., Panfilov, A.V.: Modelling of low-voltage cardioversion using 2D isotropic models of the cardiac tissue. In: Proceedings of the International Conference Days on Diffraction 2017, Saint-Petersburg, Russia, pp. 276–281 (2017) Pravdin, S.F., Nezlobinsky, T.V., Panfilov, A.V.: Modelling of low-voltage cardioversion using 2D isotropic models of the cardiac tissue. In: Proceedings of the International Conference Days on Diffraction 2017, Saint-Petersburg, Russia, pp. 276–281 (2017)
19.
Zurück zum Zitat Sato, D., Xie, Y., Weiss, J.N., Zhilin, Q., Garfinkel, A., Sanderson, A.R.: Acceleration of cardiac tissue simulation with graphic processing units. Med. Biol. Eng. Comput. 47(9), 1011–1015 (2009)CrossRef Sato, D., Xie, Y., Weiss, J.N., Zhilin, Q., Garfinkel, A., Sanderson, A.R.: Acceleration of cardiac tissue simulation with graphic processing units. Med. Biol. Eng. Comput. 47(9), 1011–1015 (2009)CrossRef
20.
Zurück zum Zitat Sinha, S., Sridhar, S.: Patterns in Excitable Media: Genesis, Dynamics, and Control. Taylor & Francis, London (2014) Sinha, S., Sridhar, S.: Patterns in Excitable Media: Genesis, Dynamics, and Control. Taylor & Francis, London (2014)
21.
Zurück zum Zitat Sweeney, M.O.: Antitachycardia pacing for ventricular tachycardia using implantable cardioverter defibrillators. Pacing Clin. Electrophysiol. 27(9), 1292–1305 (2004)CrossRef Sweeney, M.O.: Antitachycardia pacing for ventricular tachycardia using implantable cardioverter defibrillators. Pacing Clin. Electrophysiol. 27(9), 1292–1305 (2004)CrossRef
22.
Zurück zum Zitat Ten Tusscher, K.H.W.J., Panfilov, A.V.: Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model. Am. J. Physiol. Heart Circ. Physiol. 284(2), H542–H548 (2003)CrossRef Ten Tusscher, K.H.W.J., Panfilov, A.V.: Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model. Am. J. Physiol. Heart Circ. Physiol. 284(2), H542–H548 (2003)CrossRef
23.
Zurück zum Zitat Ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), 1088–1100 (2006)CrossRef Ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), 1088–1100 (2006)CrossRef
24.
Zurück zum Zitat Wathen, M.S., et al.: Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators. Circulation 110(17), 2591–2596 (2004)CrossRef Wathen, M.S., et al.: Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators. Circulation 110(17), 2591–2596 (2004)CrossRef
25.
Zurück zum Zitat Weinberg, S.H., Chang, K.C., Zhu, R., Tandri, H., Berger, R.D., Trayanova, N.A., Tung, L.: Defibrillation success with high frequency electric fields is related to degree and location of conduction block. Heart Rhythm 10(5), 740–748 (2013)CrossRef Weinberg, S.H., Chang, K.C., Zhu, R., Tandri, H., Berger, R.D., Trayanova, N.A., Tung, L.: Defibrillation success with high frequency electric fields is related to degree and location of conduction block. Heart Rhythm 10(5), 740–748 (2013)CrossRef
26.
Zurück zum Zitat Wenckebach, K.F.: De analyse van den onregelmatigen Pols. III. Over eenige Vormen van Allorythmie en Bradykardie. Nederlandsch Tijdschrift voor Geneeskunde, Amsterdam, vol. 2 (1898). (in Dutch) Wenckebach, K.F.: De analyse van den onregelmatigen Pols. III. Over eenige Vormen van Allorythmie en Bradykardie. Nederlandsch Tijdschrift voor Geneeskunde, Amsterdam, vol. 2 (1898). (in Dutch)
27.
Zurück zum Zitat Zhang, H., Bambi, H., Gang, H.: Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E 68, 026134 (2003)CrossRef Zhang, H., Bambi, H., Gang, H.: Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E 68, 026134 (2003)CrossRef
28.
Zurück zum Zitat Zykov, V.S., Mikhailov, A.S., Müller, S.C.: Controlling spiral waves in confined geometries by global feedback. Phys. Rev. Lett. 78, 3398–3401 (1997)CrossRef Zykov, V.S., Mikhailov, A.S., Müller, S.C.: Controlling spiral waves in confined geometries by global feedback. Phys. Rev. Lett. 78, 3398–3401 (1997)CrossRef
Metadaten
Titel
Spiral Wave Drift Induced by High-Frequency Forcing. Parallel Simulation in the Luo–Rudy Anisotropic Model of Cardiac Tissue
verfasst von
Timofei Epanchintsev
Sergei Pravdin
Alexander Panfilov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-93698-7_29