Skip to main content

2019 | OriginalPaper | Buchkapitel

19. Comparison of Computational Generalized and Standard Eigenvalue Solutions of Rotating Systems

verfasst von : Ali Tatar, Loic Salles, Alexander H. Haslam, Christoph W. Schwingshackl

Erschienen in: Topics in Modal Analysis & Testing, Volume 9

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modal analysis is regularly used to compute natural frequencies and mode shapes of structures via eigenvalue solutions in vibration engineering. In this paper, the eigenvalue problem of a 6 degrees of freedom rotating system with gyroscopic effects, including axial, torsional and lateral motion, is investigated using Timoshenko beam theory. The main focus thereby is the investigation of the computational time and the numerical errors in generalized and standard eigenvalue solutions of rotating systems. The finite element method is employed to compute the global stiffness, mass and gyroscopic matrices of the rotating system. The equations of motion is expressed in the state space form to convert the quadratic eigenvalue problem into the generalized and standard forms. The number of elements in the finite element model was varied to investigate the convergence of the natural frequencies and the computational performance of the two eigenvalue solutions. The numerical analyses show that the standard eigenvalue solution is significantly faster than the generalized one with increasing number of elements and the generalized eigenvalue solution can yield wrong solutions when using higher numbers of elements due to the ill-conditioning phenomenon. In this regard, the standard eigenvalue solution gives more reliable results and uses less computational time than the generalized one.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nelson, F.C.: Rotor dynamics without equations. Int. J. COMADEM. 10(3), 2–10 (2007) Nelson, F.C.: Rotor dynamics without equations. Int. J. COMADEM. 10(3), 2–10 (2007)
2.
Zurück zum Zitat Friswell, M.I.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010) Friswell, M.I.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)
3.
Zurück zum Zitat Muszynska, A.: Rotordynamics. CRC Press, Boca Raton (2005) Muszynska, A.: Rotordynamics. CRC Press, Boca Raton (2005)
4.
Zurück zum Zitat Rao, J.S.: History of Rotating Machinery Dynamics. Springer Science & Business Media, Dordrecht Rao, J.S.: History of Rotating Machinery Dynamics. Springer Science & Business Media, Dordrecht
5.
Zurück zum Zitat Genta, G.: Dynamics of Rotating Systems. Springer Science & Business Media, New York (2007) Genta, G.: Dynamics of Rotating Systems. Springer Science & Business Media, New York (2007)
6.
Zurück zum Zitat Yamamoto, T., Ishida, Y.: Linear and Nonlinear Rotordynamics: a Modern Treatment with Applications. A Wiley-Interscience publication, Wiley, Hoboken (2001) Yamamoto, T., Ishida, Y.: Linear and Nonlinear Rotordynamics: a Modern Treatment with Applications. A Wiley-Interscience publication, Wiley, Hoboken (2001)
7.
Zurück zum Zitat Golub, G.H., Van der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Mathods. 123(1), 35–65 (2000)MathSciNetCrossRef Golub, G.H., Van der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Mathods. 123(1), 35–65 (2000)MathSciNetCrossRef
8.
Zurück zum Zitat Zheng, Z., Ren, G., Williams, F.W.: The eigenvalue problem for damped gyroscopic systems. Int. J. Mech. Sci. 39(6), 741–750 (1997)CrossRef Zheng, Z., Ren, G., Williams, F.W.: The eigenvalue problem for damped gyroscopic systems. Int. J. Mech. Sci. 39(6), 741–750 (1997)CrossRef
9.
Zurück zum Zitat Ferng, W.R., Lin, W.-W., Wang, C.-S.: Numerical algorithms for undamped gyroscopic systems. Comput. Math. Appl. 37(1), 49–66 (1999)MathSciNetCrossRef Ferng, W.R., Lin, W.-W., Wang, C.-S.: Numerical algorithms for undamped gyroscopic systems. Comput. Math. Appl. 37(1), 49–66 (1999)MathSciNetCrossRef
10.
Zurück zum Zitat Qian, J., Lin, W.W.: A numerical method for quadratic eigenvalue problems of gyroscopic systems. J. Sound Vib. 306(1–2), 284–296 (2007)MathSciNetCrossRef Qian, J., Lin, W.W.: A numerical method for quadratic eigenvalue problems of gyroscopic systems. J. Sound Vib. 306(1–2), 284–296 (2007)MathSciNetCrossRef
12.
Zurück zum Zitat Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems. Springer-Verlag Berlin Heidelberg, Berlin (2005) Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems. Springer-Verlag Berlin Heidelberg, Berlin (2005)
13.
Zurück zum Zitat Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Revised Edition. SIAM, Philadelphia (2011) Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Revised Edition. SIAM, Philadelphia (2011)
14.
Zurück zum Zitat Bai, Z.: Progress in the numerical solution of the nonsymmetric eigenvalue problem. Numer. Linear. Algebra. Appl. 2(3), 219–234 (1995)MathSciNetCrossRef Bai, Z.: Progress in the numerical solution of the nonsymmetric eigenvalue problem. Numer. Linear. Algebra. Appl. 2(3), 219–234 (1995)MathSciNetCrossRef
15.
Zurück zum Zitat Anderson, E., et al.: LAPACK: A portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, pp. 2–11, New York, USA (1990) Anderson, E., et al.: LAPACK: A portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, pp. 2–11, New York, USA (1990)
16.
Zurück zum Zitat Inman, D.J.: Engineering Vibration, 4rth edn. Pearson, Prentice Hall, London (2008) Inman, D.J.: Engineering Vibration, 4rth edn. Pearson, Prentice Hall, London (2008)
17.
Zurück zum Zitat Kannan, R., Hendry, S., Higham, N.J., Tisseur, F.: Detecting the causes of ill-conditioning in structural finite element models. Comput. Struct. 133, 79–89 (2014)CrossRef Kannan, R., Hendry, S., Higham, N.J., Tisseur, F.: Detecting the causes of ill-conditioning in structural finite element models. Comput. Struct. 133, 79–89 (2014)CrossRef
18.
Zurück zum Zitat Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite elements. J. Sound Vib. 31(3), 315–330 (1973)CrossRef Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite elements. J. Sound Vib. 31(3), 315–330 (1973)CrossRef
19.
Zurück zum Zitat Nelson, H.D.: A finite rotating shaft element using Timoshenko beam theory. J. Mech. Des. 102(4), 793 (1980)CrossRef Nelson, H.D.: A finite rotating shaft element using Timoshenko beam theory. J. Mech. Des. 102(4), 793 (1980)CrossRef
21.
Zurück zum Zitat Berhanu, M.: The Polynomial Eigenvalue Problem, Ph.D. Thesis, University of Manchester, Manchester, UK (2006) Berhanu, M.: The Polynomial Eigenvalue Problem, Ph.D. Thesis, University of Manchester, Manchester, UK (2006)
22.
Zurück zum Zitat Gutiérrez-Wing, E.S., Ewins D.J.: Modal characterisation of rotating machines. Proceedings of the 19th International Modal Analysis Conference, Orlando, Florida (2001) Gutiérrez-Wing, E.S., Ewins D.J.: Modal characterisation of rotating machines. Proceedings of the 19th International Modal Analysis Conference, Orlando, Florida (2001)
23.
Zurück zum Zitat Lee, C.: A complex modal testing theory for rotating machinery. Mech. Syst. Signal Process. 5(2), 119–137 (1991)CrossRef Lee, C.: A complex modal testing theory for rotating machinery. Mech. Syst. Signal Process. 5(2), 119–137 (1991)CrossRef
24.
Zurück zum Zitat Bucher, I., Ewins, D.J.: Modal analysis and testing of rotating structures. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1778), 61–96 (2001)CrossRef Bucher, I., Ewins, D.J.: Modal analysis and testing of rotating structures. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1778), 61–96 (2001)CrossRef
25.
Zurück zum Zitat Anderson, E., et al.: LAPACK Usersguide: Release 1.0. Argonne National Lab, Chicago, Illinois, USA (1992) Anderson, E., et al.: LAPACK Usersguide: Release 1.0. Argonne National Lab, Chicago, Illinois, USA (1992)
26.
Zurück zum Zitat Moler, C.: “Matlab incorporates LAPACK,” Increasing the speed and capabilities of matrix computation. MATLAB News & Notes–Winter (2000) Moler, C.: “Matlab incorporates LAPACK,” Increasing the speed and capabilities of matrix computation. MATLAB News & Notes–Winter (2000)
27.
Zurück zum Zitat Bucher, I.: RotFE 2.1 The finite element rotor analysis package. Faculty of mechanical Engineering, Technion, Haifa, Israel (2000) Bucher, I.: RotFE 2.1 The finite element rotor analysis package. Faculty of mechanical Engineering, Technion, Haifa, Israel (2000)
28.
Zurück zum Zitat Genta, G., Bassani, D., Delprete, C.: DYNROT: A Matlab Toolbox for Rotordynamics Analysis, Polytechnic University of Turin, Turin, Italy (1994)MATH Genta, G., Bassani, D., Delprete, C.: DYNROT: A Matlab Toolbox for Rotordynamics Analysis, Polytechnic University of Turin, Turin, Italy (1994)MATH
29.
Zurück zum Zitat Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines Rotordynamics Software Manual, pp. 1–19. Cambridge University Press, Cambridge (2010) Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines Rotordynamics Software Manual, pp. 1–19. Cambridge University Press, Cambridge (2010)
30.
Zurück zum Zitat Pastor, M., Binda, M., Harčarik, T.: Modal assurance criterion. Procedia Eng. 48, 543–548 (2012)CrossRef Pastor, M., Binda, M., Harčarik, T.: Modal assurance criterion. Procedia Eng. 48, 543–548 (2012)CrossRef
31.
Zurück zum Zitat Ewins, D.J.: Modal Testing: Theory, Practice and Application, Research Studies Press, Baldock, (2000) Ewins, D.J.: Modal Testing: Theory, Practice and Application, Research Studies Press, Baldock, (2000)
Metadaten
Titel
Comparison of Computational Generalized and Standard Eigenvalue Solutions of Rotating Systems
verfasst von
Ali Tatar
Loic Salles
Alexander H. Haslam
Christoph W. Schwingshackl
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-74700-2_19

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.