Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Introduction to Active Origami Structures

verfasst von : Edwin A. Peraza Hernandez, Darren J. Hartl, Dimitris C. Lagoudas

Erschienen in: Active Origami

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Origami, the ancient art of paper folding, has inspired the design and functionality of engineering structures for decades. The underlying principles of origami are very general, it takes two-dimensional components that are easy to manufacture (sheets, plates, etc.) into three-dimensional structures. More recently, researchers have become interested in the use of active materials that convert various forms of energy into mechanical work to produce the desired folding behavior in origami structures. Such structures are termed active origami structures and are capable of folding and/or unfolding without the application of external mechanical loads but rather by the stimulus provided by a non-mechanical field (thermal, chemical, electromagnetic). This is advantageous for many areas including aerospace systems, underwater robotics, and small scale devices. In this chapter, we introduce the basic concepts and applications of origami structures in general and then focus on the description and classification of active origami structures. We finalize this chapter by reviewing existing design and simulation efforts applicable to origami structures for engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.D. Demaine, J. O’Rourke, Geometric Folding Algorithms (Cambridge University Press, Cambridge, 2007) E.D. Demaine, J. O’Rourke, Geometric Folding Algorithms (Cambridge University Press, Cambridge, 2007)
2.
Zurück zum Zitat R.J. Lang, The science of origami. Phys. World 20(2), 30–31 (2007) R.J. Lang, The science of origami. Phys. World 20(2), 30–31 (2007)
3.
Zurück zum Zitat R.J. Lang, Origami: complexity in creases (again). Eng. Sci. 67(1), 5–19 (2004) R.J. Lang, Origami: complexity in creases (again). Eng. Sci. 67(1), 5–19 (2004)
4.
Zurück zum Zitat T. Tachi, Origamizing polyhedral surfaces. IEEE Trans. Vis. Comput. Graph. 16(2), 298–311 (2010) T. Tachi, Origamizing polyhedral surfaces. IEEE Trans. Vis. Comput. Graph. 16(2), 298–311 (2010)
5.
Zurück zum Zitat Y. Liu, J.K. Boyles, J. Genzer, M.D. Dickey, Self-folding of polymer sheets using local light absorption. Soft Matter 8(6), 1764–1769 (2012) Y. Liu, J.K. Boyles, J. Genzer, M.D. Dickey, Self-folding of polymer sheets using local light absorption. Soft Matter 8(6), 1764–1769 (2012)
6.
Zurück zum Zitat S.M. Felton, M.T. Tolley, B.H. Shin, C.D. Onal, E.D. Demaine, D. Rus, R. Wood, Self-folding with shape memory composites. Soft Matter 9(32), 7688–7694 (2013) S.M. Felton, M.T. Tolley, B.H. Shin, C.D. Onal, E.D. Demaine, D. Rus, R. Wood, Self-folding with shape memory composites. Soft Matter 9(32), 7688–7694 (2013)
7.
Zurück zum Zitat L.J. Fei, D. Sujan, Origami theory and its applications: a literature review. Int. J. Soc. Hum. Sci. Eng. 7(1), 113–117 (2013) L.J. Fei, D. Sujan, Origami theory and its applications: a literature review. Int. J. Soc. Hum. Sci. Eng. 7(1), 113–117 (2013)
8.
Zurück zum Zitat B.A. Cipra, In the fold: origami meets mathematics. SIAM News 34(8), 1–4 (2001) B.A. Cipra, In the fold: origami meets mathematics. SIAM News 34(8), 1–4 (2001)
9.
Zurück zum Zitat T. Tarnai, Origami in structural engineering, in Proceedings of the IASS Symposium 2001: International Symposium on Theory, Design and Realization of Shell and Spatial Structures, Nagoya, Japan, 9–13 Oct 2001, pp. 298–299 T. Tarnai, Origami in structural engineering, in Proceedings of the IASS Symposium 2001: International Symposium on Theory, Design and Realization of Shell and Spatial Structures, Nagoya, Japan, 9–13 Oct 2001, pp. 298–299
10.
Zurück zum Zitat X. Zhou, H. Wang, Z. You, Design of three-dimensional origami structures based on a vertex approach. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 471(2181), 20150407 (2015) X. Zhou, H. Wang, Z. You, Design of three-dimensional origami structures based on a vertex approach. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 471(2181), 20150407 (2015)
11.
Zurück zum Zitat D. Dureisseix, An overview of mechanisms and patterns with origami. Int. J. Space Struct. 27(1), 1–14 (2012) D. Dureisseix, An overview of mechanisms and patterns with origami. Int. J. Space Struct. 27(1), 1–14 (2012)
12.
Zurück zum Zitat E.D. Demaine, M.L. Demaine, V. Hart, G.N. Price, T. Tachi, (Non)existence of pleated folds: how paper folds between creases. Graphs Comb. 27(3), 377–397 (2011) E.D. Demaine, M.L. Demaine, V. Hart, G.N. Price, T. Tachi, (Non)existence of pleated folds: how paper folds between creases. Graphs Comb. 27(3), 377–397 (2011)
13.
Zurück zum Zitat C. Cromvik, K. Eriksson, Airbag folding based on origami mathematics, in Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education, 2006, pp. 129–139 C. Cromvik, K. Eriksson, Airbag folding based on origami mathematics, in Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education, 2006, pp. 129–139
14.
Zurück zum Zitat R. Hoffman, Airbag folding: origami design applied to an engineering problem, in Third International Meeting of Origami Science Math and Education, Asilomar, CA, 2001 R. Hoffman, Airbag folding: origami design applied to an engineering problem, in Third International Meeting of Origami Science Math and Education, Asilomar, CA, 2001
15.
Zurück zum Zitat S. Gray, N. Zeichner, V. Kumar, M. Yim, A simulator for origami-inspired self-reconfigurable robots, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011), pp. 323–333 S. Gray, N. Zeichner, V. Kumar, M. Yim, A simulator for origami-inspired self-reconfigurable robots, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011), pp. 323–333
16.
Zurück zum Zitat W. Gao, K. Ramani, R. J. Cipra, T. Siegmund, Kinetogami: a reconfigurable, combinatorial, and printable sheet folding. J. Mech. Des. 135(11), 111009 (2013) W. Gao, K. Ramani, R. J. Cipra, T. Siegmund, Kinetogami: a reconfigurable, combinatorial, and printable sheet folding. J. Mech. Des. 135(11), 111009 (2013)
17.
Zurück zum Zitat S. Pandey, E. Gultepe, D.H. Gracias. Origami inspired self-assembly of patterned and reconfigurable particles. J. Vis. Exp. (72), e50022 (2013) S. Pandey, E. Gultepe, D.H. Gracias. Origami inspired self-assembly of patterned and reconfigurable particles. J. Vis. Exp. (72), e50022 (2013)
18.
Zurück zum Zitat N.S. Shaar, G. Barbastathis, C. Livermore, Integrated folding, alignment, and latching for reconfigurable origami microelectromechanical systems. J. Microelectromech. Syst. 24(4), 1043–1051 (2015) N.S. Shaar, G. Barbastathis, C. Livermore, Integrated folding, alignment, and latching for reconfigurable origami microelectromechanical systems. J. Microelectromech. Syst. 24(4), 1043–1051 (2015)
19.
Zurück zum Zitat E.T. Filipov, G.H. Paulino, T. Tachi, Origami tubes with reconfigurable polygonal cross-sections. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150607 (2016) E.T. Filipov, G.H. Paulino, T. Tachi, Origami tubes with reconfigurable polygonal cross-sections. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150607 (2016)
20.
Zurück zum Zitat S. Yao, X. Liu, S.V. Georgakopoulos, M.M. Tentzeris, A novel reconfigurable origami spring antenna, in Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, Piscataway, 2014), pp. 374–375 S. Yao, X. Liu, S.V. Georgakopoulos, M.M. Tentzeris, A novel reconfigurable origami spring antenna, in Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, Piscataway, 2014), pp. 374–375
21.
Zurück zum Zitat Z. You, Folding structures out of flat materials. Science 345(6197), 623–624 (2014) Z. You, Folding structures out of flat materials. Science 345(6197), 623–624 (2014)
22.
Zurück zum Zitat C.D. Saintsing, B.S. Cook, M.M. Tentzeris, An origami inspired reconfigurable spiral antenna, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35353 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A050 C.D. Saintsing, B.S. Cook, M.M. Tentzeris, An origami inspired reconfigurable spiral antenna, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35353 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A050
23.
Zurück zum Zitat N. Bassik, G.M. Stern, D.H. Gracias, Microassembly based on hands free origami with bidirectional curvature. Appl. Phys. Lett. 95(9), 091901 (2009) N. Bassik, G.M. Stern, D.H. Gracias, Microassembly based on hands free origami with bidirectional curvature. Appl. Phys. Lett. 95(9), 091901 (2009)
24.
Zurück zum Zitat S. Mueller, B. Kruck, P. Baudisch, LaserOrigami: laser-cutting 3D objects, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 2585–2592 S. Mueller, B. Kruck, P. Baudisch, LaserOrigami: laser-cutting 3D objects, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 2585–2592
25.
Zurück zum Zitat B. Shin, S.M. Felton, M.T. Tolley, R.J. Wood, Self-assembling sensors for printable machines, in Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2014), pp. 4417–4422 B. Shin, S.M. Felton, M.T. Tolley, R.J. Wood, Self-assembling sensors for printable machines, in Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2014), pp. 4417–4422
26.
Zurück zum Zitat J. Morgan, S.P. Magleby, R.J. Lang, L.L. Howell, A preliminary process for understanding origami-adapted design, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-47559 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A053 J. Morgan, S.P. Magleby, R.J. Lang, L.L. Howell, A preliminary process for understanding origami-adapted design, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-47559 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A053
27.
Zurück zum Zitat B. An, S. Miyashita, M.T. Tolley, D.M. Aukes, L. Meeker, E.D. Demaine, M.L. Demaine, R.J. Wood, D. Rus, An end-to-end approach to making self-folded 3D surface shapes by uniform heating, in Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2014), pp. 1466–1473 B. An, S. Miyashita, M.T. Tolley, D.M. Aukes, L. Meeker, E.D. Demaine, M.L. Demaine, R.J. Wood, D. Rus, An end-to-end approach to making self-folded 3D surface shapes by uniform heating, in Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2014), pp. 1466–1473
28.
Zurück zum Zitat A. Piqué, S.A. Mathews, N.A. Charipar, A.J. Birnbaum, Laser origami: a new technique for assembling 3D microstructures, in Proceedings of SPIE, vol. 8244 (International Society for Optics and Photonics, San Diego, 2012), p. 82440B-82440B-7 A. Piqué, S.A. Mathews, N.A. Charipar, A.J. Birnbaum, Laser origami: a new technique for assembling 3D microstructures, in Proceedings of SPIE, vol. 8244 (International Society for Optics and Photonics, San Diego, 2012), p. 82440B-82440B-7
29.
Zurück zum Zitat P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006) P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)
30.
Zurück zum Zitat T. Tørring, N.V. Voigt, J. Nangreave, H. Yan, K.V. Gothelf, DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40(12), 5636–5646 (2011) T. Tørring, N.V. Voigt, J. Nangreave, H. Yan, K.V. Gothelf, DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40(12), 5636–5646 (2011)
31.
Zurück zum Zitat J. Nangreave, D. Han, Y. Liu, H. Yan, DNA origami: a history and current perspective. Curr. Opin. Chem. Biol. 14(5), 608–615 (2010) J. Nangreave, D. Han, Y. Liu, H. Yan, DNA origami: a history and current perspective. Curr. Opin. Chem. Biol. 14(5), 608–615 (2010)
32.
Zurück zum Zitat A. Edwards, H. Yan, DNA origami, in Nucleic Acid Nanotechnology (Springer, Berlin, 2014), pp. 93–133 A. Edwards, H. Yan, DNA origami, in Nucleic Acid Nanotechnology (Springer, Berlin, 2014), pp. 93–133
33.
Zurück zum Zitat A.E. Marras, L. Zhou, H.-J. Su, C.E. Castro, Programmable motion of DNA origami mechanisms. Proc. Natl. Acad. Sci. 112(3), 713–718 (2015) A.E. Marras, L. Zhou, H.-J. Su, C.E. Castro, Programmable motion of DNA origami mechanisms. Proc. Natl. Acad. Sci. 112(3), 713–718 (2015)
34.
Zurück zum Zitat C. Cao, Y. Feng, J. Zang, G.P. López, X. Zhao, Tunable lotus-leaf and rose-petal effects via graphene paper origami. Extreme Mech. Lett. 4, 18–25 (2015) C. Cao, Y. Feng, J. Zang, G.P. López, X. Zhao, Tunable lotus-leaf and rose-petal effects via graphene paper origami. Extreme Mech. Lett. 4, 18–25 (2015)
35.
Zurück zum Zitat K. Miura, Map fold a la Miura style, its physical characteristics and application to the space science, in Research of Pattern Formation, ed. by R. Takaki (KTK Scientific Publishers, Tokyo, 1994), pp. 77–90 K. Miura, Map fold a la Miura style, its physical characteristics and application to the space science, in Research of Pattern Formation, ed. by R. Takaki (KTK Scientific Publishers, Tokyo, 1994), pp. 77–90
36.
Zurück zum Zitat R.J. Lang, Computational origami: from flapping birds to space telescopes, in Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry (ACM, New York, 2009), pp. 159–162 R.J. Lang, Computational origami: from flapping birds to space telescopes, in Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry (ACM, New York, 2009), pp. 159–162
37.
Zurück zum Zitat L. Wilson, S. Pellegrino, R. Danner, Origami sunshield concepts for space telescopes, in Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013, pp. 2013–1594 L. Wilson, S. Pellegrino, R. Danner, Origami sunshield concepts for space telescopes, in Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013, pp. 2013–1594
38.
Zurück zum Zitat D. Pohl, W.D. Wolpert, Engineered spacecraft deployables influenced by nature. in Proceedings of SPIE, vol. 7424, 2009, p. 742408-742408-9 D. Pohl, W.D. Wolpert, Engineered spacecraft deployables influenced by nature. in Proceedings of SPIE, vol. 7424, 2009, p. 742408-742408-9
39.
Zurück zum Zitat S.A. Zirbel, R.J. Lang, M.W. Thomson, D.A. Sigel, P.E. Walkemeyer, B.P. Trease, S.P. Magleby, L.L. Howell, Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135(11), 111005 (2013) S.A. Zirbel, R.J. Lang, M.W. Thomson, D.A. Sigel, P.E. Walkemeyer, B.P. Trease, S.P. Magleby, L.L. Howell, Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135(11), 111005 (2013)
40.
Zurück zum Zitat Y. Jung, J. Kim, Flutter speed estimation for folding wing system, in Proceedings of the 18th International Conference on Composite Materials, 2011 Y. Jung, J. Kim, Flutter speed estimation for folding wing system, in Proceedings of the 18th International Conference on Composite Materials, 2011
41.
Zurück zum Zitat M.P. Snyder, B. Sanders, F.E. Eastep, G.J. Frank, Vibration and flutter characteristics of a folding wing. J. Aircr. 46(3), 791–799 (2009) M.P. Snyder, B. Sanders, F.E. Eastep, G.J. Frank, Vibration and flutter characteristics of a folding wing. J. Aircr. 46(3), 791–799 (2009)
42.
Zurück zum Zitat D.H. Lee, T.A. Weisshaar, Aeroelastic studies on a folding wing configuration, in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, vol. 1996, 2005, pp. 1–13 D.H. Lee, T.A. Weisshaar, Aeroelastic studies on a folding wing configuration, in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, vol. 1996, 2005, pp. 1–13
43.
Zurück zum Zitat G. Bunget, S. Seelecke, BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling, in Proceedings of the 15th International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2008), p. 69282F G. Bunget, S. Seelecke, BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling, in Proceedings of the 15th International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2008), p. 69282F
44.
Zurück zum Zitat G. Bunget, S. Seelecke, BATMAV: a 2-DOF bio-inspired flapping flight platform, in Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2010), p. 76433B G. Bunget, S. Seelecke, BATMAV: a 2-DOF bio-inspired flapping flight platform, in Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2010), p. 76433B
45.
Zurück zum Zitat P.E.I. Pounds, Paper plane: towards disposable low-cost folded cellulose-substrate UAVs, in 2012 Australasian Conference on Robotics and Automation (Australian Robotics and Automation Association (ARAA), Sydney, 2012) P.E.I. Pounds, Paper plane: towards disposable low-cost folded cellulose-substrate UAVs, in 2012 Australasian Conference on Robotics and Automation (Australian Robotics and Automation Association (ARAA), Sydney, 2012)
46.
Zurück zum Zitat Q.-T. Truong, B.W. Argyoganendro, H.C. Park, Design and demonstration of insect mimicking foldable artificial wing using four-bar linkage systems. J. Bionic Eng. 11(3), 449–458 (2014) Q.-T. Truong, B.W. Argyoganendro, H.C. Park, Design and demonstration of insect mimicking foldable artificial wing using four-bar linkage systems. J. Bionic Eng. 11(3), 449–458 (2014)
47.
Zurück zum Zitat S.-M. Baek, D.-Y. Lee, K.-J. Cho, Curved compliant facet origami-based self-deployable gliding wing module for jump-gliding, in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. DETC2016-60543 (American Society of Mechanical Engineers, New York, 2016), p. V05BT07A028 S.-M. Baek, D.-Y. Lee, K.-J. Cho, Curved compliant facet origami-based self-deployable gliding wing module for jump-gliding, in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. DETC2016-60543 (American Society of Mechanical Engineers, New York, 2016), p. V05BT07A028
48.
Zurück zum Zitat S. Miyashita, S. Guitron, M. Ludersdorfer, C.R. Sung, D. Rus, An untethered miniature origami robot that self-folds, walks, swims, and degrades, in Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2015), pp. 1490–1496 S. Miyashita, S. Guitron, M. Ludersdorfer, C.R. Sung, D. Rus, An untethered miniature origami robot that self-folds, walks, swims, and degrades, in Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2015), pp. 1490–1496
49.
Zurück zum Zitat D.-Y. Lee, J.-S. Kim, S.-R. Kim, J.-S. Koh, K.-J. Cho, The deformable wheel robot using magic-ball origami structure, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13016 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A040 D.-Y. Lee, J.-S. Kim, S.-R. Kim, J.-S. Koh, K.-J. Cho, The deformable wheel robot using magic-ball origami structure, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13016 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A040
50.
Zurück zum Zitat P.J. White, S. Latscha, S. Schlaefer, M. Yim, Dielectric elastomer bender actuator applied to modular robotics, in Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2011), pp. 408–413 P.J. White, S. Latscha, S. Schlaefer, M. Yim, Dielectric elastomer bender actuator applied to modular robotics, in Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2011), pp. 408–413
51.
Zurück zum Zitat A.M. Hoover, R.S. Fearing, Fast scale prototyping for folded millirobots, in Proceedings of the 2008 IEEE International Conference on Robotics and Automation ICRA 2008 (IEEE, Pitscataway, 2008), pp. 886–892 A.M. Hoover, R.S. Fearing, Fast scale prototyping for folded millirobots, in Proceedings of the 2008 IEEE International Conference on Robotics and Automation ICRA 2008 (IEEE, Pitscataway, 2008), pp. 886–892
52.
Zurück zum Zitat E. Vander Hoff, D. Jeong, K. Lee, OrigamiBot-I: a thread-actuated origami robot for manipulation and locomotion, in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Piscataway, 2014), pp. 1421–1426 E. Vander Hoff, D. Jeong, K. Lee, OrigamiBot-I: a thread-actuated origami robot for manipulation and locomotion, in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Piscataway, 2014), pp. 1421–1426
53.
Zurück zum Zitat Z. Zhakypov, M. Falahi, M. Shah, J. Paik, The design and control of the multi-modal locomotion origami robot, Tribot, in Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2015), pp. 4349–4355 Z. Zhakypov, M. Falahi, M. Shah, J. Paik, The design and control of the multi-modal locomotion origami robot, Tribot, in Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2015), pp. 4349–4355
54.
Zurück zum Zitat C.D. Onal, M.T. Tolley, R.J. Wood, D. Rus, Origami-inspired printed robots. IEEE/ASME Trans. Mechatron. 20(5), 2214–2221 (2015) C.D. Onal, M.T. Tolley, R.J. Wood, D. Rus, Origami-inspired printed robots. IEEE/ASME Trans. Mechatron. 20(5), 2214–2221 (2015)
55.
Zurück zum Zitat K. Zhang, C. Qiu, J.S. Dai, An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. 8(3), 031010 (2016) K. Zhang, C. Qiu, J.S. Dai, An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. 8(3), 031010 (2016)
56.
Zurück zum Zitat H. Shigemune, S. Maeda, Y. Hara, N. Hosoya, S. Hashimoto, Origami robot: a self-folding paper robot with an electrothermal actuator created by printing. IEEE/ASME Trans. Mechatron. 21(6), 1–1 (2016) H. Shigemune, S. Maeda, Y. Hara, N. Hosoya, S. Hashimoto, Origami robot: a self-folding paper robot with an electrothermal actuator created by printing. IEEE/ASME Trans. Mechatron. 21(6), 1–1 (2016)
57.
Zurück zum Zitat R. Yan, M. Luo, Z. Wan, Y. Qin, J. Santoso, E. Skorina, C. Onal, OriSnake: design, fabrication and experimental analysis of a 3-D origami snake robot. IEEE Robot. Autom. Lett. 3(3), 1993–1999 (2018) R. Yan, M. Luo, Z. Wan, Y. Qin, J. Santoso, E. Skorina, C. Onal, OriSnake: design, fabrication and experimental analysis of a 3-D origami snake robot. IEEE Robot. Autom. Lett. 3(3), 1993–1999 (2018)
58.
Zurück zum Zitat A. Pagano, T. Yan, B. Chien, A. Wissa, S. Tawfick, A crawling robot driven by multi-stable origami. Smart Mater. Struct. 26(9), 094007 (2017) A. Pagano, T. Yan, B. Chien, A. Wissa, S. Tawfick, A crawling robot driven by multi-stable origami. Smart Mater. Struct. 26(9), 094007 (2017)
59.
Zurück zum Zitat S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines. Science 345(6197), 644–646 (2014) S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines. Science 345(6197), 644–646 (2014)
60.
Zurück zum Zitat D.-Y. Lee, S.-R. Kim, J.-S. Kim, J.-J. Park, K.-J. Cho, Origami wheel transformer: a variable-diameter wheel drive robot using an origami structure. Soft Robot. 4(2), 163–180 (2017) D.-Y. Lee, S.-R. Kim, J.-S. Kim, J.-J. Park, K.-J. Cho, Origami wheel transformer: a variable-diameter wheel drive robot using an origami structure. Soft Robot. 4(2), 163–180 (2017)
61.
Zurück zum Zitat K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, M. Sasaki, Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419(1–2), 131–137 (2006) K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, M. Sasaki, Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419(1–2), 131–137 (2006)
62.
Zurück zum Zitat C.L. Randall, E. Gultepe, D.H. Gracias, Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30(3), 138–146 (2012) C.L. Randall, E. Gultepe, D.H. Gracias, Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30(3), 138–146 (2012)
63.
Zurück zum Zitat R. Fernandes, D.H. Gracias, Self-folding polymeric containers for encapsulation and delivery of drugs. Adv. Drug Deliv. Rev. 64(14), 1579–1589 (2012) R. Fernandes, D.H. Gracias, Self-folding polymeric containers for encapsulation and delivery of drugs. Adv. Drug Deliv. Rev. 64(14), 1579–1589 (2012)
64.
Zurück zum Zitat Y. Wang, L. Ge, P. Wang, M. Yan, J. Yu, S. Ge, A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing. Chem. Commun. 50(16), 1947–1949 (2014) Y. Wang, L. Ge, P. Wang, M. Yan, J. Yu, S. Ge, A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing. Chem. Commun. 50(16), 1947–1949 (2014)
65.
Zurück zum Zitat K. Kuribayashi, S. Takeuchi, Foldable Parylene origami sheets covered with cells: toward applications in bio-implantable devices, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011), p. 385 K. Kuribayashi, S. Takeuchi, Foldable Parylene origami sheets covered with cells: toward applications in bio-implantable devices, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011), p. 385
66.
Zurück zum Zitat B.J. Edmondson, L.A. Bowen, C.L. Grames, S.P. Magleby, L.L. Howell, T.C. Bateman, Oriceps: origami-inspired forceps, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2013-3299 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A027 B.J. Edmondson, L.A. Bowen, C.L. Grames, S.P. Magleby, L.L. Howell, T.C. Bateman, Oriceps: origami-inspired forceps, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2013-3299 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A027
67.
Zurück zum Zitat A. Taylor, T. Slutzky, L. Feuerman, M. Fok, Z.T.H. Tse, Origami endoscope design for MRI-guided therapy, in 2017 Design of Medical Devices Conference, Paper No. DMD2017-3352 (American Society of Mechanical Engineers, New York, 2017), p. V001T08A006 A. Taylor, T. Slutzky, L. Feuerman, M. Fok, Z.T.H. Tse, Origami endoscope design for MRI-guided therapy, in 2017 Design of Medical Devices Conference, Paper No. DMD2017-3352 (American Society of Mechanical Engineers, New York, 2017), p. V001T08A006
68.
Zurück zum Zitat D.C. Lagoudas (ed.), Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008) D.C. Lagoudas (ed.), Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008)
69.
Zurück zum Zitat A.P. Thrall, C.P. Quaglia, Accordion shelters: a historical review of origami-like deployable shelters developed by the US military. Eng. Struct. 59, 686–692 (2014) A.P. Thrall, C.P. Quaglia, Accordion shelters: a historical review of origami-like deployable shelters developed by the US military. Eng. Struct. 59, 686–692 (2014)
70.
Zurück zum Zitat F.J. Martínez-Martín, A.P. Thrall, Honeycomb core sandwich panels for origami-inspired deployable shelters: multi-objective optimization for minimum weight and maximum energy efficiency. Eng. Struct. 69, 158–167 (2014) F.J. Martínez-Martín, A.P. Thrall, Honeycomb core sandwich panels for origami-inspired deployable shelters: multi-objective optimization for minimum weight and maximum energy efficiency. Eng. Struct. 69, 158–167 (2014)
71.
Zurück zum Zitat C.P. Quagli, Z.C. Ballard, A.P. Thrall, Parametric modelling of an air-liftable origami-inspired deployable shelter with a novel erection strategy. Mobile Rapidly Assembled Struct. IV 136, 23 (2014) C.P. Quagli, Z.C. Ballard, A.P. Thrall, Parametric modelling of an air-liftable origami-inspired deployable shelter with a novel erection strategy. Mobile Rapidly Assembled Struct. IV 136, 23 (2014)
72.
Zurück zum Zitat C.P. Quaglia, N. Yu, A.P. Thrall, S. Paolucci, Balancing energy efficiency and structural performance through multi-objective shape optimization: case study of a rapidly deployable origami-inspired shelter. Energy Build. 82, 733–745 (2014) C.P. Quaglia, N. Yu, A.P. Thrall, S. Paolucci, Balancing energy efficiency and structural performance through multi-objective shape optimization: case study of a rapidly deployable origami-inspired shelter. Energy Build. 82, 733–745 (2014)
73.
Zurück zum Zitat C.P. Quaglia, A.J. Dascanio, A.P. Thrall, Bascule shelters: a novel erection strategy for origami-inspired deployable structures. Eng. Struct. 75, 276–287 (2014) C.P. Quaglia, A.J. Dascanio, A.P. Thrall, Bascule shelters: a novel erection strategy for origami-inspired deployable structures. Eng. Struct. 75, 276–287 (2014)
74.
Zurück zum Zitat M.D. Tumbeva, Y. Wang, M.M. Sowar, A.J. Dascanio, A.P. Thrall, Quilt pattern inspired engineering: efficient manufacturing of shelter topologies. Autom. Constr. 63, 57–65 (2016) M.D. Tumbeva, Y. Wang, M.M. Sowar, A.J. Dascanio, A.P. Thrall, Quilt pattern inspired engineering: efficient manufacturing of shelter topologies. Autom. Constr. 63, 57–65 (2016)
75.
Zurück zum Zitat T. Tachi, Geometric considerations for the design of rigid origami structures, in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, vol. 12, 2010, pp. 458–460 T. Tachi, Geometric considerations for the design of rigid origami structures, in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, vol. 12, 2010, pp. 458–460
77.
Zurück zum Zitat Y. Shi, F. Zhang, K. Nan, X. Wang, J. Wang, Y. Zhang, Y. Zhang, H. Luan, K.-C. Hwang, Y. Huang, J.A. Rogers, Y. Zhang, Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mech. Lett. 11, 105–110 (2017) Y. Shi, F. Zhang, K. Nan, X. Wang, J. Wang, Y. Zhang, Y. Zhang, H. Luan, K.-C. Hwang, Y. Huang, J.A. Rogers, Y. Zhang, Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mech. Lett. 11, 105–110 (2017)
78.
Zurück zum Zitat Z. Yan, F. Zhang, J. Wang, F. Liu, X. Guo, K. Nan, Q. Lin, M. Gao, D. Xiao, Y. Shi, Y. Qiu, H. Luan, J.H. Kim, Y. Wang, H. Luo, M. Han, Y. Huang, Y. Zhang, J.A. Rogers, Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. Adv. Funct. Mater. 26(16), 2629–2639 (2016) Z. Yan, F. Zhang, J. Wang, F. Liu, X. Guo, K. Nan, Q. Lin, M. Gao, D. Xiao, Y. Shi, Y. Qiu, H. Luan, J.H. Kim, Y. Wang, H. Luo, M. Han, Y. Huang, Y. Zhang, J.A. Rogers, Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. Adv. Funct. Mater. 26(16), 2629–2639 (2016)
79.
Zurück zum Zitat Y. Zhang, Z. Yan, K. Nan, D. Xiao, Y. Liu, H. Luan, H. Fu, X. Wang, Q. Yang, J. Wang, W. Ren, H. Si, F. Liu, L. Yang, H. Li, J. Wang, X. Guo, H. Luo, L. Wang, Y. Huang, J.A. Rogers, A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl. Acad. Sci. 112(38), 11757–11764 (2015) Y. Zhang, Z. Yan, K. Nan, D. Xiao, Y. Liu, H. Luan, H. Fu, X. Wang, Q. Yang, J. Wang, W. Ren, H. Si, F. Liu, L. Yang, H. Li, J. Wang, X. Guo, H. Luo, L. Wang, Y. Huang, J.A. Rogers, A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl. Acad. Sci. 112(38), 11757–11764 (2015)
80.
Zurück zum Zitat B. Saccà, C.M. Niemeyer, DNA origami: the art of folding DNA. Angew. Chem. Int. Ed. 51(1), 58–66 (2012) B. Saccà, C.M. Niemeyer, DNA origami: the art of folding DNA. Angew. Chem. Int. Ed. 51(1), 58–66 (2012)
81.
Zurück zum Zitat J.T. Early, R. Hyde, R.L. Baron, Twenty-meter space telescope based on diffractive Fresnel lens, in Proceedings of the SPIE’s 48th Annual Meeting, Optical Science and Technology (International Society for Optics and Photonics, San Diego, 2004), pp. 148–156 J.T. Early, R. Hyde, R.L. Baron, Twenty-meter space telescope based on diffractive Fresnel lens, in Proceedings of the SPIE’s 48th Annual Meeting, Optical Science and Technology (International Society for Optics and Photonics, San Diego, 2004), pp. 148–156
82.
Zurück zum Zitat J.M. Zanardi Ocampo, P.O. Vaccaro, K. Kubota, T. Fleischmann, T.-S. Wang, T. Aida, T. Ohnishi, A. Sugimura, R. Izumoto, M. Hosoda, et al. Characterization of GaAs-based micro-origami mirrors by optical actuation. Microelectron. Eng. 73, 429–434 (2004) J.M. Zanardi Ocampo, P.O. Vaccaro, K. Kubota, T. Fleischmann, T.-S. Wang, T. Aida, T. Ohnishi, A. Sugimura, R. Izumoto, M. Hosoda, et al. Characterization of GaAs-based micro-origami mirrors by optical actuation. Microelectron. Eng. 73, 429–434 (2004)
83.
Zurück zum Zitat Q. Cheng, Z. Song, T. Ma, B.B. Smith, R. Tang, H. Yu, H. Jiang, C.K. Chan, Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett. 13(10), 4969–4974 (2013) Q. Cheng, Z. Song, T. Ma, B.B. Smith, R. Tang, H. Yu, H. Jiang, C.K. Chan, Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett. 13(10), 4969–4974 (2013)
84.
Zurück zum Zitat Z. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H. Yu, H. Jiang, Origami lithium-ion batteries. Nat. Commun. 5, Article no. 3140 (2014) Z. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H. Yu, H. Jiang, Origami lithium-ion batteries. Nat. Commun. 5, Article no. 3140 (2014)
85.
Zurück zum Zitat I. Nam, G.-P. Kim, S. Park, J.W. Han, J. Yi, All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy Environ. Sci. 7(3), 1095–1102 (2014) I. Nam, G.-P. Kim, S. Park, J.W. Han, J. Yi, All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy Environ. Sci. 7(3), 1095–1102 (2014)
86.
Zurück zum Zitat S. Miyashita, L. Meeker, M.T. Tolley, R.J. Wood, D. Rus, Self-folding miniature elastic electric devices. Smart Mater. Struct. 23(9), 094005 (2014) S. Miyashita, L. Meeker, M.T. Tolley, R.J. Wood, D. Rus, Self-folding miniature elastic electric devices. Smart Mater. Struct. 23(9), 094005 (2014)
87.
Zurück zum Zitat R. Tang, H. Huang, H. Tu, H. Liang, M. Liang, Z. Song, Y. Xu, H. Jiang, H. Yu, Origami-enabled deformable silicon solar cells. Appl. Phys. Lett. 104(8), 083501 (2014) R. Tang, H. Huang, H. Tu, H. Liang, M. Liang, Z. Song, Y. Xu, H. Jiang, H. Yu, Origami-enabled deformable silicon solar cells. Appl. Phys. Lett. 104(8), 083501 (2014)
88.
Zurück zum Zitat J.W. Hu, Z.P. Wu, S.W. Zhong, W.B. Zhang, S. Suresh, A. Mehta, N. Koratkar, Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon 87, 292–298 (2015) J.W. Hu, Z.P. Wu, S.W. Zhong, W.B. Zhang, S. Suresh, A. Mehta, N. Koratkar, Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon 87, 292–298 (2015)
89.
Zurück zum Zitat S. Fischer, K. Drechsler, S. Kilchert, A. Johnson, Mechanical tests for foldcore base material properties. Compos. Part A Appl. Sci. Manuf. 40(12), 1941–1952 (2009) S. Fischer, K. Drechsler, S. Kilchert, A. Johnson, Mechanical tests for foldcore base material properties. Compos. Part A Appl. Sci. Manuf. 40(12), 1941–1952 (2009)
90.
Zurück zum Zitat S. Heimbs, J. Cichosz, M. Klaus, S. Kilchert, A.F. Johnson, Sandwich structures with textile-reinforced composite foldcores under impact loads. Compos. Struct. 92(6), 1485 –1497 (2010) S. Heimbs, J. Cichosz, M. Klaus, S. Kilchert, A.F. Johnson, Sandwich structures with textile-reinforced composite foldcores under impact loads. Compos. Struct. 92(6), 1485 –1497 (2010)
91.
Zurück zum Zitat S. Heimbs, S. Kilchert, S. Fischer, M. Klaus, E. Baranger, Sandwich structures with folded core: mechanical modeling and impact simulations, in SAMPE Europe International Conference, Paris, 2009, pp. 324–331 S. Heimbs, S. Kilchert, S. Fischer, M. Klaus, E. Baranger, Sandwich structures with folded core: mechanical modeling and impact simulations, in SAMPE Europe International Conference, Paris, 2009, pp. 324–331
92.
Zurück zum Zitat M. Klaus, H.-G. Reimerdes , Numerical investigation of different strength after impact test procedures, in Proceedings of the IMPLAST 2010 conference, Providence, RI, 2010 M. Klaus, H.-G. Reimerdes , Numerical investigation of different strength after impact test procedures, in Proceedings of the IMPLAST 2010 conference, Providence, RI, 2010
93.
Zurück zum Zitat A.F. Johnson, Novel hybrid structural core sandwich materials for aircraft applications, in Proceedings of the 11th Euro-Japanese Symposium on Composite Materials, Porto, Portugal, 9–11 September 2008 A.F. Johnson, Novel hybrid structural core sandwich materials for aircraft applications, in Proceedings of the 11th Euro-Japanese Symposium on Composite Materials, Porto, Portugal, 9–11 September 2008
94.
Zurück zum Zitat M. Grzeschik, Performance of foldcores mechanical properties and testing, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13324, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A042 M. Grzeschik, Performance of foldcores mechanical properties and testing, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13324, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A042
95.
Zurück zum Zitat J.M. Gattas, Z. You, Quasi-static impact response of alternative origami-core sandwich panels, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12681, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A032 J.M. Gattas, Z. You, Quasi-static impact response of alternative origami-core sandwich panels, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12681, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A032
96.
Zurück zum Zitat S. Fischer, Realistic FE simulation of foldcore sandwich structures.Int. J. Mech. Mater. Eng. 10(1), 1–11 (2015) S. Fischer, Realistic FE simulation of foldcore sandwich structures.Int. J. Mech. Mater. Eng. 10(1), 1–11 (2015)
97.
Zurück zum Zitat R. Sturm, S. Fischer, Virtual design method for controlled failure in foldcore sandwich panels. Appl. Compos. Mater. 22(6), 791–803 (2015) R. Sturm, S. Fischer, Virtual design method for controlled failure in foldcore sandwich panels. Appl. Compos. Mater. 22(6), 791–803 (2015)
98.
Zurück zum Zitat R.K. Fathers, J.M. Gattas, Z. You, Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures. Int. J. Mech. Sci. 101–102, 421–428 (2015) R.K. Fathers, J.M. Gattas, Z. You, Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures. Int. J. Mech. Sci. 101–102, 421–428 (2015)
99.
Zurück zum Zitat J.M. Gattas, Z. You, The behaviour of curved-crease foldcores under low-velocity impact loads. Int. J. Solids Struct. 53, 80–91 (2015) J.M. Gattas, Z. You, The behaviour of curved-crease foldcores under low-velocity impact loads. Int. J. Solids Struct. 53, 80–91 (2015)
100.
Zurück zum Zitat J. Ma, Z. You, The origami crash box in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 277–290 J. Ma, Z. You, The origami crash box in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 277–290
101.
Zurück zum Zitat J. Ma, Z. You, A novel origami crash box with varying profiles, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13495 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A048 J. Ma, Z. You, A novel origami crash box with varying profiles, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13495 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A048
102.
Zurück zum Zitat S.S. Tolman, I.L. Delimont, L.L. Howell, D.T. Fullwood, Material selection for elastic energy absorption in origami-inspired compliant corrugations. Smart Mater. Struct. 23(9), 094010 (2014) S.S. Tolman, I.L. Delimont, L.L. Howell, D.T. Fullwood, Material selection for elastic energy absorption in origami-inspired compliant corrugations. Smart Mater. Struct. 23(9), 094010 (2014)
103.
Zurück zum Zitat J. Ma, Z. You, Energy absorption of thin-walled square tubes with a prefolded origami pattern–Part I: geometry and numerical simulation. J. Appl. Mech. 81(1), 011003 (2014) J. Ma, Z. You, Energy absorption of thin-walled square tubes with a prefolded origami pattern–Part I: geometry and numerical simulation. J. Appl. Mech. 81(1), 011003 (2014)
104.
Zurück zum Zitat J. Ma, J. Song, Y. Chen, An origami-inspired structure with graded stiffness. Int. J. Mech. Sci. 136, 134–142 (2018) J. Ma, J. Song, Y. Chen, An origami-inspired structure with graded stiffness. Int. J. Mech. Sci. 136, 134–142 (2018)
105.
Zurück zum Zitat K. Yang, S. Xu, S. Zhou, Y.M. Xie, Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption. Thin Walled Struct. 123, 100–113 (2018) K. Yang, S. Xu, S. Zhou, Y.M. Xie, Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption. Thin Walled Struct. 123, 100–113 (2018)
106.
Zurück zum Zitat M. Schenk, S.D. Guest, Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. 110(9), 3276–3281 (2013) M. Schenk, S.D. Guest, Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. 110(9), 3276–3281 (2013)
107.
Zurück zum Zitat K. Fuchi, A.R. Diaz, E.J. Rothwell, R.O. Ouedraogo, J. Tang, An origami tunable metamaterial. J. Appl. Phys. 111(8), 084905 (2012) K. Fuchi, A.R. Diaz, E.J. Rothwell, R.O. Ouedraogo, J. Tang, An origami tunable metamaterial. J. Appl. Phys. 111(8), 084905 (2012)
108.
Zurück zum Zitat J.L. Silverberg, A.A. Evans, L. McLeod, R.C. Hayward, T. Hull, C.D. Santangelo, I. Cohen, Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345(6197), 647–650 (2014) J.L. Silverberg, A.A. Evans, L. McLeod, R.C. Hayward, T. Hull, C.D. Santangelo, I. Cohen, Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345(6197), 647–650 (2014)
109.
Zurück zum Zitat E.T. Filipov, T. Tachi, G.H. Paulino, Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. 112(40), 12321–12326 (2015) E.T. Filipov, T. Tachi, G.H. Paulino, Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. 112(40), 12321–12326 (2015)
110.
Zurück zum Zitat V. Brunck, F. Lechenault, A. Reid, M. Adda-Bedia, Elastic theory of origami-based metamaterials. Phys. Rev. E 93(3), 033005 (2016) V. Brunck, F. Lechenault, A. Reid, M. Adda-Bedia, Elastic theory of origami-based metamaterials. Phys. Rev. E 93(3), 033005 (2016)
111.
Zurück zum Zitat X. Zhou, S. Zang, Z. You, Origami mechanical metamaterials based on the Miura-derivative fold patterns. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2191), 20160361 (2016) X. Zhou, S. Zang, Z. You, Origami mechanical metamaterials based on the Miura-derivative fold patterns. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2191), 20160361 (2016)
112.
Zurück zum Zitat Y. Shen, Y. Pang, J. Wang, H. Ma, Z. Pei, S. Qu, Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption. J. Phys. D Appl. Phys. 48(44), 445008 (2015) Y. Shen, Y. Pang, J. Wang, H. Ma, Z. Pei, S. Qu, Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption. J. Phys. D Appl. Phys. 48(44), 445008 (2015)
113.
Zurück zum Zitat W. Jiang, H. Ma, M. Feng, L. Yan, J. Wang, J. Wang, S. Qu, Origami-inspired building block and parametric design for mechanical metamaterials. J. Phys. D Appl. Phys. 49(31), 315302 (2016) W. Jiang, H. Ma, M. Feng, L. Yan, J. Wang, J. Wang, S. Qu, Origami-inspired building block and parametric design for mechanical metamaterials. J. Phys. D Appl. Phys. 49(31), 315302 (2016)
114.
Zurück zum Zitat M.A.E. Kshad, H.E. Naguib, Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2016), p. 98000H M.A.E. Kshad, H.E. Naguib, Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2016), p. 98000H
115.
Zurück zum Zitat E. Boatti, N. Vasios, K. Bertoldi, Origami metamaterials for tunable thermal expansion. Adv. Mater. 29(26), 1700360 (2017) E. Boatti, N. Vasios, K. Bertoldi, Origami metamaterials for tunable thermal expansion. Adv. Mater. 29(26), 1700360 (2017)
116.
Zurück zum Zitat Z. Wang, L. Jing, K. Yao, Y. Yang, B. Zheng, C.M. Soukoulis, H. Chen, Y. Liu, Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater. 29(27), 1700412 (2017) Z. Wang, L. Jing, K. Yao, Y. Yang, B. Zheng, C.M. Soukoulis, H. Chen, Y. Liu, Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater. 29(27), 1700412 (2017)
117.
Zurück zum Zitat Y. Zhao, M.S. Nandra, Y.C. Tai, A MEMS intraocular origami coil, in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) (IEEE, Piscataway, 2011), pp. 2172–2175 Y. Zhao, M.S. Nandra, Y.C. Tai, A MEMS intraocular origami coil, in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) (IEEE, Piscataway, 2011), pp. 2172–2175
118.
Zurück zum Zitat C. Yoon, R. Xiao, J. Park, J. Cha, T.D. Nguyen, D.H. Gracias, Functional stimuli responsive hydrogel devices by self-folding. Smart Mater. Struct. 23(9), 094008 (2014) C. Yoon, R. Xiao, J. Park, J. Cha, T.D. Nguyen, D.H. Gracias, Functional stimuli responsive hydrogel devices by self-folding. Smart Mater. Struct. 23(9), 094008 (2014)
119.
Zurück zum Zitat A. Vorob’ev, P. Vaccaro, K. Kubota, S. Saravanan, T. Aida, Array of micromachined components fabricated using “micro-origami” method. Jpn. J. Appl. Phys. 42(6S), 4024 (2003) A. Vorob’ev, P. Vaccaro, K. Kubota, S. Saravanan, T. Aida, Array of micromachined components fabricated using “micro-origami” method. Jpn. J. Appl. Phys. 42(6S), 4024 (2003)
120.
Zurück zum Zitat J.M.Z. Ocampo, P.O. Vaccaro, T. Fleischmann, T.-S. Wang, K. Kubota, T. Aida, T. Ohnishi, A. Sugimura, R. Izumoto, M. Hosoda, S. Nashima, Optical actuation of micromirrors fabricated by the micro-origami technique. Appl. Phys. Lett. 83(18), 3647–3649 (2003) J.M.Z. Ocampo, P.O. Vaccaro, T. Fleischmann, T.-S. Wang, K. Kubota, T. Aida, T. Ohnishi, A. Sugimura, R. Izumoto, M. Hosoda, S. Nashima, Optical actuation of micromirrors fabricated by the micro-origami technique. Appl. Phys. Lett. 83(18), 3647–3649 (2003)
121.
Zurück zum Zitat T.G. Leong, A.M. Zarafshar, D.H. Gracias, Three-dimensional fabrication at small size scales. Small 6(7), 792–806 (2010) T.G. Leong, A.M. Zarafshar, D.H. Gracias, Three-dimensional fabrication at small size scales. Small 6(7), 792–806 (2010)
122.
Zurück zum Zitat J. Rogers, Y. Huang, O.G. Schmidt, D.H. Gracias, Origami MEMS and NEMS. MRS Bull. 41(2), 123–129 (2016) J. Rogers, Y. Huang, O.G. Schmidt, D.H. Gracias, Origami MEMS and NEMS. MRS Bull. 41(2), 123–129 (2016)
123.
Zurück zum Zitat A. Efimovskaya, D. Senkal, A.M. Shkel, Miniature origami-like folded MEMS TIMU, in Proceedings of Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE, Piscataway, 2015), pp. 584–587 A. Efimovskaya, D. Senkal, A.M. Shkel, Miniature origami-like folded MEMS TIMU, in Proceedings of Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE, Piscataway, 2015), pp. 584–587
124.
Zurück zum Zitat Y. Morikawa, S. Yamagiwa, H. Sawahata, M. Ishida, T. Kawano, An origami-inspired ultrastretchable bioprobe film device, in Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, Piscataway, 2016), pp. 149–152 Y. Morikawa, S. Yamagiwa, H. Sawahata, M. Ishida, T. Kawano, An origami-inspired ultrastretchable bioprobe film device, in Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, Piscataway, 2016), pp. 149–152
125.
Zurück zum Zitat G.J. Hayes, Y. Liu, J. Genzer, G. Lazzi, M.D. Dickey, Self-folding origami microstrip antennas. IEEE Trans. Antennas Propag. 62(10), 5416–5419 (2014) G.J. Hayes, Y. Liu, J. Genzer, G. Lazzi, M.D. Dickey, Self-folding origami microstrip antennas. IEEE Trans. Antennas Propag. 62(10), 5416–5419 (2014)
126.
Zurück zum Zitat A. Lebée, From folds to structures, a review. Int. J. Space Struct. 30(2), 55–74 (2015) A. Lebée, From folds to structures, a review. Int. J. Space Struct. 30(2), 55–74 (2015)
128.
Zurück zum Zitat T. Hull (ed.), Origami 3: Third International Meeting of Origami Science, Mathematics, and Education (AK Peters, Natick, 2002) T. Hull (ed.), Origami 3: Third International Meeting of Origami Science, Mathematics, and Education (AK Peters, Natick, 2002)
129.
Zurück zum Zitat R. Lang (ed.), Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education (AK Peters, Natick, 2009) R. Lang (ed.), Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education (AK Peters, Natick, 2009)
130.
Zurück zum Zitat P. Wang-Iverson, R. Lang, M. Yim (eds.), Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011) P. Wang-Iverson, R. Lang, M. Yim (eds.), Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011)
131.
Zurück zum Zitat K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. Lang, P. Wang-Iverson (eds.), Origami 6: Sixth International Meeting of Origami Science, Mathematics, and Education (American Mathematical Society, Providence, 2011) K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. Lang, P. Wang-Iverson (eds.), Origami 6: Sixth International Meeting of Origami Science, Mathematics, and Education (American Mathematical Society, Providence, 2011)
132.
Zurück zum Zitat E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr, D.C. Lagoudas, Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23(9), 094001 (2014) E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr, D.C. Lagoudas, Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23(9), 094001 (2014)
133.
Zurück zum Zitat L. Ionov, Soft microorigami: self-folding polymer films. Soft Matter 7(15), 6786–6791 (2011) L. Ionov, Soft microorigami: self-folding polymer films. Soft Matter 7(15), 6786–6791 (2011)
134.
Zurück zum Zitat C. Lauff, T.W. Simpson, M. Frecker, Z. Ounaies, S. Ahmed, P. von Lockette, R. Strzelec, R. Sheridan, J.-M. Lien, Differentiating bending from folding in origami engineering using active materials, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34702 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A040 C. Lauff, T.W. Simpson, M. Frecker, Z. Ounaies, S. Ahmed, P. von Lockette, R. Strzelec, R. Sheridan, J.-M. Lien, Differentiating bending from folding in origami engineering using active materials, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34702 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A040
135.
Zurück zum Zitat S.M. Felton, K.P. Becker, D.M. Aukes, R.J. Wood, Self-folding with shape memory composites at the millimeter scale. J. Micromech. Microeng. 25(8), 085004 (2015) S.M. Felton, K.P. Becker, D.M. Aukes, R.J. Wood, Self-folding with shape memory composites at the millimeter scale. J. Micromech. Microeng. 25(8), 085004 (2015)
136.
Zurück zum Zitat P.K. Kumar, D.C. Lagoudas, Introduction to shape memory alloys, in Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008), pp. 1–51 P.K. Kumar, D.C. Lagoudas, Introduction to shape memory alloys, in Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008), pp. 1–51
137.
Zurück zum Zitat K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1999) K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1999)
138.
Zurück zum Zitat M.V. Gandhi, B.D. Thompson, Smart Materials and Structures (Springer, London, 1992) M.V. Gandhi, B.D. Thompson, Smart Materials and Structures (Springer, London, 1992)
139.
Zurück zum Zitat R.C. Smith, Smart Material Systems: Model Development (SIAM, Philadelphia, 2005) R.C. Smith, Smart Material Systems: Model Development (SIAM, Philadelphia, 2005)
140.
Zurück zum Zitat D.J. Leo, Engineering Analysis of Smart Material Systems (Wiley, Hoboken, 2007) D.J. Leo, Engineering Analysis of Smart Material Systems (Wiley, Hoboken, 2007)
141.
Zurück zum Zitat Y. Liu, K. Gall, M.L. Dunn, A.R. Greenberg, J. Diani, Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plast. 22(2), 279–313 (2006) Y. Liu, K. Gall, M.L. Dunn, A.R. Greenberg, J. Diani, Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plast. 22(2), 279–313 (2006)
142.
Zurück zum Zitat A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41(12), 2034–2057 (2002) A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41(12), 2034–2057 (2002)
143.
Zurück zum Zitat H. Tobushi, T. Hashimoto, S. Hayashi, E. Yamada, Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. J. Intell. Mater. Syst. Struct. 8(8), 711–718 (1997) H. Tobushi, T. Hashimoto, S. Hayashi, E. Yamada, Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. J. Intell. Mater. Syst. Struct. 8(8), 711–718 (1997)
144.
Zurück zum Zitat C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007) C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007)
145.
Zurück zum Zitat L. Ionov, Hydrogel-based actuators: possibilities and limitations. Mater. Today 17(10), 494–503 (2014) L. Ionov, Hydrogel-based actuators: possibilities and limitations. Mater. Today 17(10), 494–503 (2014)
146.
Zurück zum Zitat K. Deligkaris, T.S. Tadele, W. Olthuis, A. van den Berg, Hydrogel-based devices for biomedical applications. Sens. Actuators B Chem. 147(2), 765–774 (2010) K. Deligkaris, T.S. Tadele, W. Olthuis, A. van den Berg, Hydrogel-based devices for biomedical applications. Sens. Actuators B Chem. 147(2), 765–774 (2010)
147.
Zurück zum Zitat A. O’Halloran, F. O’malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7), 9 (2008) A. O’Halloran, F. O’malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7), 9 (2008)
148.
Zurück zum Zitat M. Farshad, A. Benine, Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004) M. Farshad, A. Benine, Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004)
149.
Zurück zum Zitat L. Bowen, K. Springsteen, H. Feldstein, M. Frecker, T.W. Simpson, P. von Lockette, Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base. J. Mech. Robot. 7(1), 011010 (2015) L. Bowen, K. Springsteen, H. Feldstein, M. Frecker, T.W. Simpson, P. von Lockette, Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base. J. Mech. Robot. 7(1), 011010 (2015)
150.
Zurück zum Zitat E. Hawkes, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, D. Rus, R.J. Wood, Programmable matter by folding. Proc. Natl. Acad. Sci. 107(28), 12441–12445 (2010) E. Hawkes, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, D. Rus, R.J. Wood, Programmable matter by folding. Proc. Natl. Acad. Sci. 107(28), 12441–12445 (2010)
151.
Zurück zum Zitat J. Paik, B. An, D. Rus, R.J. Wood, Robotic origamis: self-morphing modular robots, in Proceedings of the 2nd International Conference on Morphological Computation ICMC, EPFL-CONF-206919, Venice, 2012 J. Paik, B. An, D. Rus, R.J. Wood, Robotic origamis: self-morphing modular robots, in Proceedings of the 2nd International Conference on Morphological Computation ICMC, EPFL-CONF-206919, Venice, 2012
152.
Zurück zum Zitat Z. You, K. Kuribayashi, A novel origami stent, in Proceedings of Summer Bioengineering Conference, Key Biscayne, 2003, pp. 0257–0258 Z. You, K. Kuribayashi, A novel origami stent, in Proceedings of Summer Bioengineering Conference, Key Biscayne, 2003, pp. 0257–0258
153.
Zurück zum Zitat K. Kuribayashi, A novel foldable stent graft. Thesis, University of Oxford, 2004 K. Kuribayashi, A novel foldable stent graft. Thesis, University of Oxford, 2004
154.
Zurück zum Zitat C.D. Onal, R.J. Wood, D. Rus, An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 18(2), 430–438 (2013) C.D. Onal, R.J. Wood, D. Rus, An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 18(2), 430–438 (2013)
155.
Zurück zum Zitat C.D. Onal, R.J. Wood, D. Rus, Towards printable robotics: origami-inspired planar fabrication of three-dimensional mechanisms, in Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2011), pp. 4608–4613 C.D. Onal, R.J. Wood, D. Rus, Towards printable robotics: origami-inspired planar fabrication of three-dimensional mechanisms, in Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2011), pp. 4608–4613
156.
Zurück zum Zitat D.-Y. Lee, J.-S. Kim, S.-R. Kim, J.-J. Park, K.-J. Cho, Design of deformable-wheeled robot based on origami structure with shape memory alloy coil spring, in Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (IEEE, Piscataway, 2013), p. 120 D.-Y. Lee, J.-S. Kim, S.-R. Kim, J.-J. Park, K.-J. Cho, Design of deformable-wheeled robot based on origami structure with shape memory alloy coil spring, in Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (IEEE, Piscataway, 2013), p. 120
157.
Zurück zum Zitat M.T. Tolley, S.M. Felton, S. Miyashita, D. Aukes, D. Rus, R.J. Wood, Self-folding origami: shape memory composites activated by uniform heating. Smart Mater. Struct. 23(9), 094006 (2014) M.T. Tolley, S.M. Felton, S. Miyashita, D. Aukes, D. Rus, R.J. Wood, Self-folding origami: shape memory composites activated by uniform heating. Smart Mater. Struct. 23(9), 094006 (2014)
158.
Zurück zum Zitat M.T. Tolley, S.M. Felton, S. Miyashita, L. Xu, B. Shin, M. Zhou, D. Rus, R.J. Wood, Self-folding shape memory laminates for automated fabrication, in Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2013), pp. 4931–4936 M.T. Tolley, S.M. Felton, S. Miyashita, L. Xu, B. Shin, M. Zhou, D. Rus, R.J. Wood, Self-folding shape memory laminates for automated fabrication, in Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2013), pp. 4931–4936
159.
Zurück zum Zitat S.M. Felton, M.T. Tolley, C.D. Onal, D. Rus, R.J. Wood, Robot self-assembly by folding: a printed inchworm robot, in Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2013), pp. 277–282 S.M. Felton, M.T. Tolley, C.D. Onal, D. Rus, R.J. Wood, Robot self-assembly by folding: a printed inchworm robot, in Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2013), pp. 277–282
160.
Zurück zum Zitat L.J. Wood, J. Rendon, R.J. Malak, D. Hartl, An origami-inspired, SMA actuated lifting structure, in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. DETC2016-60261 (American Society of Mechanical Engineers, New York, 2016), p. V05BT07A024 L.J. Wood, J. Rendon, R.J. Malak, D. Hartl, An origami-inspired, SMA actuated lifting structure, in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. DETC2016-60261 (American Society of Mechanical Engineers, New York, 2016), p. V05BT07A024
161.
Zurück zum Zitat A. Roudaut, A. Karnik, M. Löchtefeld, S. Subramanian, Morphees: toward high shape resolution in self-actuated flexible mobile devices, in Proceedings of the 2013 SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 593–602 A. Roudaut, A. Karnik, M. Löchtefeld, S. Subramanian, Morphees: toward high shape resolution in self-actuated flexible mobile devices, in Proceedings of the 2013 SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 593–602
162.
Zurück zum Zitat Q. Ge, C.K. Dunn, H. J. Qi, M.L. Dunn, Active origami by 4D printing. Smart Mater. Struct. 23(9), 094007 (2014) Q. Ge, C.K. Dunn, H. J. Qi, M.L. Dunn, Active origami by 4D printing. Smart Mater. Struct. 23(9), 094007 (2014)
163.
Zurück zum Zitat E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr, Design and numerical analysis of an SMA mesh-based self-folding sheet. Smart Mater. Struct. 22(9), 094008 (2013) E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr, Design and numerical analysis of an SMA mesh-based self-folding sheet. Smart Mater. Struct. 22(9), 094008 (2013)
164.
Zurück zum Zitat E.A. Peraza Hernandez, S. Hu, H.W. Kung, D. Hartl, E. Akleman, Towards building smart self-folding structures. Comput. Graph. 37(6), 730–742 (2013) E.A. Peraza Hernandez, S. Hu, H.W. Kung, D. Hartl, E. Akleman, Towards building smart self-folding structures. Comput. Graph. 37(6), 730–742 (2013)
165.
Zurück zum Zitat D. Hartl, K. Lane, R. Malak, Computational design of a reconfigurable origami space structure incorporating shape memory alloy thin films, in Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS (American Society of Mechanical Engineers, New York, 2012), pp. 277–285 D. Hartl, K. Lane, R. Malak, Computational design of a reconfigurable origami space structure incorporating shape memory alloy thin films, in Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS (American Society of Mechanical Engineers, New York, 2012), pp. 277–285
166.
Zurück zum Zitat T. Halbert, P. Moghadas, R. Malak, D. Hartl, Control of a shape memory alloy based self-folding sheet, in Proceedings of the ASME 2014 International Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34703 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A041 T. Halbert, P. Moghadas, R. Malak, D. Hartl, Control of a shape memory alloy based self-folding sheet, in Proceedings of the ASME 2014 International Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34703 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A041
167.
Zurück zum Zitat A. Gomes, A. Nesbitt, R. Vertegaal, MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 583–592 A. Gomes, A. Nesbitt, R. Vertegaal, MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 583–592
168.
Zurück zum Zitat J. Qi, L. Buechley, Animating paper using shape memory alloys, in Proceedings of the 2012 SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2012), pp. 749–752 J. Qi, L. Buechley, Animating paper using shape memory alloys, in Proceedings of the 2012 SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2012), pp. 749–752
169.
Zurück zum Zitat J. Qi, L. Buechley, Electronic popables: exploring paper-based computing through an interactive pop-up book, in Proceedings of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction (ACM, New York, 2010), pp. 121–128 J. Qi, L. Buechley, Electronic popables: exploring paper-based computing through an interactive pop-up book, in Proceedings of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction (ACM, New York, 2010), pp. 121–128
170.
Zurück zum Zitat N. Koizumi, K. Yasu, A. Liu, M. Sugimoto, M. Inami, Animated paper: a toolkit for building moving toys. Comput. Entertain. 8(2), 7 (2010) N. Koizumi, K. Yasu, A. Liu, M. Sugimoto, M. Inami, Animated paper: a toolkit for building moving toys. Comput. Entertain. 8(2), 7 (2010)
171.
Zurück zum Zitat A.P. Lee, D.R. Ciarlo, P.A. Krulevitch, S. Lehew, J. Trevino, M.A. Northrup, A practical microgripper by fine alignment, eutectic bonding and SMA actuation. Sens. Actuators A Phys. 54(1), 755–759 (1996) A.P. Lee, D.R. Ciarlo, P.A. Krulevitch, S. Lehew, J. Trevino, M.A. Northrup, A practical microgripper by fine alignment, eutectic bonding and SMA actuation. Sens. Actuators A Phys. 54(1), 755–759 (1996)
172.
Zurück zum Zitat P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, Thin film shape memory alloy microactuators. J. Microelectromech. Syst. 5(4), 270–282 (1996) P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, Thin film shape memory alloy microactuators. J. Microelectromech. Syst. 5(4), 270–282 (1996)
173.
Zurück zum Zitat Y. Liu, M. Miskiewicz, M.J. Escuti, J. Genzer, M.D. Dickey, Three-dimensional folding of pre-strained polymer sheets via absorption of laser light. J. Appl. Phys. 115(20), 204911 (2014) Y. Liu, M. Miskiewicz, M.J. Escuti, J. Genzer, M.D. Dickey, Three-dimensional folding of pre-strained polymer sheets via absorption of laser light. J. Appl. Phys. 115(20), 204911 (2014)
174.
Zurück zum Zitat Y. Liu, R. Mailen, Y. Zhu, M.D. Dickey, J. Genzer, Simple geometric model to describe self-folding of polymer sheets. Phys. Rev. E 89(4), 042601 (2014) Y. Liu, R. Mailen, Y. Zhu, M.D. Dickey, J. Genzer, Simple geometric model to describe self-folding of polymer sheets. Phys. Rev. E 89(4), 042601 (2014)
175.
Zurück zum Zitat R. Saunders, D. Hartl, R. Malak, D. Lagoudas, Design and analysis of a self-folding SMA-SMP composite laminate, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35151 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A048 R. Saunders, D. Hartl, R. Malak, D. Lagoudas, Design and analysis of a self-folding SMA-SMP composite laminate, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35151 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A048
176.
Zurück zum Zitat K.E. Laflin, C.J. Morris, T. Muqeem, D.H. Gracias, Laser triggered sequential folding of microstructures. Appl. Phys. Lett. 101(13), 131901 (2012) K.E. Laflin, C.J. Morris, T. Muqeem, D.H. Gracias, Laser triggered sequential folding of microstructures. Appl. Phys. Lett. 101(13), 131901 (2012)
177.
Zurück zum Zitat K. Kalaitzidou, A.J. Crosby, Adaptive polymer particles. Appl. Phys. Lett. 93(4), 041910 (2008) K. Kalaitzidou, A.J. Crosby, Adaptive polymer particles. Appl. Phys. Lett. 93(4), 041910 (2008)
178.
Zurück zum Zitat B. Simpson, G. Nunnery, R. Tannenbaum, K. Kalaitzidou, Capture/release ability of thermo-responsive polymer particles. J. Mater. Chem. 20(17), 3496–3501 (2010) B. Simpson, G. Nunnery, R. Tannenbaum, K. Kalaitzidou, Capture/release ability of thermo-responsive polymer particles. J. Mater. Chem. 20(17), 3496–3501 (2010)
179.
Zurück zum Zitat C. Sung, R. Lin, S. Miyashita, S. Yim, S. Kim, D. Rus, Self-folded soft robotic structures with controllable joints, in Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2017) C. Sung, R. Lin, S. Miyashita, S. Yim, S. Kim, D. Rus, Self-folded soft robotic structures with controllable joints, in Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2017)
180.
Zurück zum Zitat K. Fuchi, T.H. Ware, P.R. Buskohl, G.W. Reich, R.A. Vaia, T.J. White, J.J. Joo, Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter 11(37), 7288–7295 (2015) K. Fuchi, T.H. Ware, P.R. Buskohl, G.W. Reich, R.A. Vaia, T.J. White, J.J. Joo, Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter 11(37), 7288–7295 (2015)
181.
Zurück zum Zitat K. Fuchi, P.R. Buskohl, T. Ware, R.A. Vaia, T.J. White, G.W. Reich, J.J. Joo, Inverse design of LCN films for origami applications using topology optimization, in Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2014-7497 (American Society of Mechanical Engineers, New York, 2014), p. V001T01A011 K. Fuchi, P.R. Buskohl, T. Ware, R.A. Vaia, T.J. White, G.W. Reich, J.J. Joo, Inverse design of LCN films for origami applications using topology optimization, in Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2014-7497 (American Society of Mechanical Engineers, New York, 2014), p. V001T01A011
182.
Zurück zum Zitat L.T. de Haan, V. Gimenez-Pinto, A. Konya, T.-S. Nguyen, J. Verjans, C. Sánchez-Somolinos, J.V. Selinger, R.L.B. Selinger, D.J. Broer, A.P.H.J. Schenning, Accordion-like actuators of multiple 3D patterned liquid crystal polymer films. Adv. Funct. Mater. 24(9), 1251–1258 (2014) L.T. de Haan, V. Gimenez-Pinto, A. Konya, T.-S. Nguyen, J. Verjans, C. Sánchez-Somolinos, J.V. Selinger, R.L.B. Selinger, D.J. Broer, A.P.H.J. Schenning, Accordion-like actuators of multiple 3D patterned liquid crystal polymer films. Adv. Funct. Mater. 24(9), 1251–1258 (2014)
183.
Zurück zum Zitat K.-U. Jeong, J.-H. Jang, D.-Y. Kim, C. Nah, J.H. Lee, M.-H. Lee, H.-J. Sun, C.-L. Wang, S.Z.D. Cheng, E.L. Thomas, Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms. J. Mater. Chem. 21(19), 6824–6830 (2011) K.-U. Jeong, J.-H. Jang, D.-Y. Kim, C. Nah, J.H. Lee, M.-H. Lee, H.-J. Sun, C.-L. Wang, S.Z.D. Cheng, E.L. Thomas, Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms. J. Mater. Chem. 21(19), 6824–6830 (2011)
184.
Zurück zum Zitat S. Zakharchenko, N. Puretskiy, G. Stoychev, M. Stamm, L. Ionov, Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes. Soft Matter 6(12), 2633–2636 (2010) S. Zakharchenko, N. Puretskiy, G. Stoychev, M. Stamm, L. Ionov, Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes. Soft Matter 6(12), 2633–2636 (2010)
185.
Zurück zum Zitat G. Stoychev, N. Puretskiy, L. Ionov, Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7(7), 3277–3279 (2011) G. Stoychev, N. Puretskiy, L. Ionov, Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7(7), 3277–3279 (2011)
186.
Zurück zum Zitat G. Stoychev, S. Zakharchenko, S. Turcaud, J.W.C. Dunlop, L. Ionov, Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano 6(5), 3925–3934 (2012) G. Stoychev, S. Zakharchenko, S. Turcaud, J.W.C. Dunlop, L. Ionov, Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano 6(5), 3925–3934 (2012)
187.
Zurück zum Zitat K. Kumar, B. Nandan, V. Luchnikov, F. Simon, A. Vyalikh, U. Scheler, M. Stamm, A novel approach for the fabrication of silica and silica/metal hybrid microtubes. Chem. Mater. 21(18), 4282–4287 (2009) K. Kumar, B. Nandan, V. Luchnikov, F. Simon, A. Vyalikh, U. Scheler, M. Stamm, A novel approach for the fabrication of silica and silica/metal hybrid microtubes. Chem. Mater. 21(18), 4282–4287 (2009)
188.
Zurück zum Zitat K. Kumar, B. Nandan, V. Luchnikov, E.B. Gowd, M. Stamm, Fabrication of metallic microtubes using self-rolled polymer tubes as templates. Langmuir 25(13), 7667–7674 (2009) K. Kumar, B. Nandan, V. Luchnikov, E.B. Gowd, M. Stamm, Fabrication of metallic microtubes using self-rolled polymer tubes as templates. Langmuir 25(13), 7667–7674 (2009)
189.
Zurück zum Zitat K. Kumar, V. Luchnikov, V. Nandan, V. Senkovskyy, M. Stamm, Formation of self-rolled polymer microtubes studied by combinatorial approach. Eur. Polym. J. 44(12), 4115–4121 (2008) K. Kumar, V. Luchnikov, V. Nandan, V. Senkovskyy, M. Stamm, Formation of self-rolled polymer microtubes studied by combinatorial approach. Eur. Polym. J. 44(12), 4115–4121 (2008)
190.
Zurück zum Zitat V. Luchnikov, K. Kumar, M. Stamm, Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films. J. Micromech. Microeng. 18(3), 035041 (2008) V. Luchnikov, K. Kumar, M. Stamm, Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films. J. Micromech. Microeng. 18(3), 035041 (2008)
191.
Zurück zum Zitat W. Guo, M. Li, J. Zhou, Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Mater. Struct. 22(11), 115028 (2013) W. Guo, M. Li, J. Zhou, Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Mater. Struct. 22(11), 115028 (2013)
192.
Zurück zum Zitat H. He, J. Guan, J.L. Lee, An oral delivery device based on self-folding hydrogels. J. Control. Release 110(2), 339–346 (2006) H. He, J. Guan, J.L. Lee, An oral delivery device based on self-folding hydrogels. J. Control. Release 110(2), 339–346 (2006)
193.
Zurück zum Zitat H. He, X. Cao, L.J. Lee, Design of a novel hydrogel-based intelligent system for controlled drug release. J. Control. Release 95(3), 391–402 (2004) H. He, X. Cao, L.J. Lee, Design of a novel hydrogel-based intelligent system for controlled drug release. J. Control. Release 95(3), 391–402 (2004)
194.
Zurück zum Zitat T.S. Shim, S.-H. Kim, C.-J. Heo, H.C. Jeon, S.-M. Yang, Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. Angew. Chem. 124(6), 1449–1452 (2012) T.S. Shim, S.-H. Kim, C.-J. Heo, H.C. Jeon, S.-M. Yang, Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. Angew. Chem. 124(6), 1449–1452 (2012)
195.
Zurück zum Zitat J. Guan, H. He, D.J. Hansford, L.J. Lee, Self-folding of three-dimensional hydrogel microstructures. J. Phys. Chem. B 109(49), 23134–23137 (2005) J. Guan, H. He, D.J. Hansford, L.J. Lee, Self-folding of three-dimensional hydrogel microstructures. J. Phys. Chem. B 109(49), 23134–23137 (2005)
196.
Zurück zum Zitat S. Zakharchenko, E. Sperling, L. Ionov, Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. Biomacromolecules 12(6), 2211–2215 (2011) S. Zakharchenko, E. Sperling, L. Ionov, Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. Biomacromolecules 12(6), 2211–2215 (2011)
197.
Zurück zum Zitat N. Bassik, A. Brafman, A.M. Zarafshar, M. Jamal, D. Luvsanjav, F.M. Selaru, D.H. Gracias, Enzymatically triggered actuation of miniaturized tools. J. Am. Chem. Soc. 132(46), 16314–16317 (2010) N. Bassik, A. Brafman, A.M. Zarafshar, M. Jamal, D. Luvsanjav, F.M. Selaru, D.H. Gracias, Enzymatically triggered actuation of miniaturized tools. J. Am. Chem. Soc. 132(46), 16314–16317 (2010)
198.
Zurück zum Zitat J.S. Randhawa, T.G. Leong, N. Bassik, B.R. Benson, M.T. Jochmans, D.H. Gracias, Pick-and-place using chemically actuated microgrippers. J. Am. Chem. Soc. 130(51), 17238–17239 (2008) J.S. Randhawa, T.G. Leong, N. Bassik, B.R. Benson, M.T. Jochmans, D.H. Gracias, Pick-and-place using chemically actuated microgrippers. J. Am. Chem. Soc. 130(51), 17238–17239 (2008)
199.
Zurück zum Zitat W. Sun, F. Liu, Z. Ma, C. Li, J. Zhou, Soft mobile robots driven by foldable dielectric elastomer actuators. J. Appl. Phys. 120(8), 084901 (2016) W. Sun, F. Liu, Z. Ma, C. Li, J. Zhou, Soft mobile robots driven by foldable dielectric elastomer actuators. J. Appl. Phys. 120(8), 084901 (2016)
200.
Zurück zum Zitat H. Okuzaki, T. Saido, H. Suzuki, Y. Hara, H. Yan, A biomorphic origami actuator fabricated by folding a conducting paper. J. Phys. Conf. Ser. 127(1), 012001 (2008) H. Okuzaki, T. Saido, H. Suzuki, Y. Hara, H. Yan, A biomorphic origami actuator fabricated by folding a conducting paper. J. Phys. Conf. Ser. 127(1), 012001 (2008)
201.
Zurück zum Zitat H. Okuzaki, T. Kuwabara, K. Funasaka, T. Saido, Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv. Funct. Mater. 23(36), 4400–4407 (2013) H. Okuzaki, T. Kuwabara, K. Funasaka, T. Saido, Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv. Funct. Mater. 23(36), 4400–4407 (2013)
202.
Zurück zum Zitat P. von Lockette, R. Sheridan, Folding actuation and locomotion of novel magneto-active elastomer (MAE) composites, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures, and Intelligent Systems SMASIS, Paper No. SMASIS2013-3222, 16–18 September 2013, p. V001T01A020 P. von Lockette, R. Sheridan, Folding actuation and locomotion of novel magneto-active elastomer (MAE) composites, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures, and Intelligent Systems SMASIS, Paper No. SMASIS2013-3222, 16–18 September 2013, p. V001T01A020
203.
Zurück zum Zitat P. von Lockette, Fabrication and performance of magneto-active elastomer composite structures, in Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2014-7590 (American Society of Mechanical Engineers, New York, 2014), p. V001T01A019 P. von Lockette, Fabrication and performance of magneto-active elastomer composite structures, in Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2014-7590 (American Society of Mechanical Engineers, New York, 2014), p. V001T01A019
204.
Zurück zum Zitat S. Ahmed, C. Lauff, A. Crivaro, K. McGough, R. Sheridan, M. Frecker, P. von Lockette, Z. Ounaies, T. Simpson, J.-M. Lien, R. Strzelec, Multi-field responsive origami structures: preliminary modeling and experiments, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12405, Portland, OR, 4–7 August 2013, p. V06BT07A028 S. Ahmed, C. Lauff, A. Crivaro, K. McGough, R. Sheridan, M. Frecker, P. von Lockette, Z. Ounaies, T. Simpson, J.-M. Lien, R. Strzelec, Multi-field responsive origami structures: preliminary modeling and experiments, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12405, Portland, OR, 4–7 August 2013, p. V06BT07A028
205.
206.
Zurück zum Zitat L. Bowen, K. Springsteen, M. Frecker, T. Simpson, Optimization of a dynamic model of magnetic actuation of an origami mechanism, in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-47458 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A05 L. Bowen, K. Springsteen, M. Frecker, T. Simpson, Optimization of a dynamic model of magnetic actuation of an origami mechanism, in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-47458 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A05
207.
Zurück zum Zitat L. Bowen, K. Springsteen, M. Frecker, T. Simpson, Trade space exploration of magnetically actuated origami mechanisms. J. Mech. Robot. 8(3), 031012 (2016) L. Bowen, K. Springsteen, M. Frecker, T. Simpson, Trade space exploration of magnetically actuated origami mechanisms. J. Mech. Robot. 8(3), 031012 (2016)
208.
Zurück zum Zitat K. McGough, S. Ahmed, M. Frecker, Z. Ounaies, Finite element analysis and validation of dielectric elastomer actuators used for active origami. Smart Mater. Struct. 23(9), 094002 (2014) K. McGough, S. Ahmed, M. Frecker, Z. Ounaies, Finite element analysis and validation of dielectric elastomer actuators used for active origami. Smart Mater. Struct. 23(9), 094002 (2014)
209.
Zurück zum Zitat S. Ahmed, Z. Ounaies, M. Frecker, Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures. Smart Mater. Struct. 23(9), 094003 (2014) S. Ahmed, Z. Ounaies, M. Frecker, Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures. Smart Mater. Struct. 23(9), 094003 (2014)
210.
Zurück zum Zitat R.N. Saunders, D.J. Hartl, J.G. Boyd, D.C. Lagoudas, Modeling and development of a twisting wing using inductively heated shape memory alloy actuators, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2015), p. 94310U–94310U–8 R.N. Saunders, D.J. Hartl, J.G. Boyd, D.C. Lagoudas, Modeling and development of a twisting wing using inductively heated shape memory alloy actuators, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2015), p. 94310U–94310U–8
211.
Zurück zum Zitat R.N. Saunders, J.G. Boyd, D.J. Hartl, J.K. Brown, F.T. Calkins, D.C. Lagoudas, A validated model for induction heating of shape memory alloy actuators. Smart Mater. Struct. 25(4), 045022 (2016) R.N. Saunders, J.G. Boyd, D.J. Hartl, J.K. Brown, F.T. Calkins, D.C. Lagoudas, A validated model for induction heating of shape memory alloy actuators. Smart Mater. Struct. 25(4), 045022 (2016)
212.
Zurück zum Zitat T.J. Cognata, D. Hartl, R. Sheth, C. Dinsmore, A morphing radiator for high-turndown thermal control of crewed space exploration vehicles, in Proceedings of 23rd AIAA/AHS Adaptive Structures Conference, AIAA 2015-1509, 2015 T.J. Cognata, D. Hartl, R. Sheth, C. Dinsmore, A morphing radiator for high-turndown thermal control of crewed space exploration vehicles, in Proceedings of 23rd AIAA/AHS Adaptive Structures Conference, AIAA 2015-1509, 2015
213.
Zurück zum Zitat C.L. Bertagne, R.B. Sheth, D.J. Hartl, J.D. Whitcomb, Simulating coupled thermal-mechanical interactions in morphing radiators, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2015), p. 94312F–94312F–10 C.L. Bertagne, R.B. Sheth, D.J. Hartl, J.D. Whitcomb, Simulating coupled thermal-mechanical interactions in morphing radiators, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2015), p. 94312F–94312F–10
214.
Zurück zum Zitat B. An, N. Benbernou, E.D. Demaine, D. Rus, Planning to fold multiple objects from a single self-folding sheet. Robotica 29(1), 87–102 (2011) B. An, N. Benbernou, E.D. Demaine, D. Rus, Planning to fold multiple objects from a single self-folding sheet. Robotica 29(1), 87–102 (2011)
215.
Zurück zum Zitat B. An, D. Rus, Designing and programming self-folding sheets. Robot. Auton. Syst. 62(7), 976–1001 (2014) B. An, D. Rus, Designing and programming self-folding sheets. Robot. Auton. Syst. 62(7), 976–1001 (2014)
216.
Zurück zum Zitat E.A. Peraza Hernandez, D.J. Hartl, K.R. Frei, E. Akleman, Connectivity of shape memory alloy-based self-folding structures, in Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference, in AIAA SciTech (National Harbor, Maryland, 2014), p. 1415 E.A. Peraza Hernandez, D.J. Hartl, K.R. Frei, E. Akleman, Connectivity of shape memory alloy-based self-folding structures, in Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference, in AIAA SciTech (National Harbor, Maryland, 2014), p. 1415
217.
Zurück zum Zitat E. Peraza Hernandez, D. Hartl, R. Malak, E. Akleman, O. Gonen, H. Kung, Design tools for patterned self-folding reconfigurable structures based on programmable active laminates. J. Mech. Robot. 8(3), 031015 (2016) E. Peraza Hernandez, D. Hartl, R. Malak, E. Akleman, O. Gonen, H. Kung, Design tools for patterned self-folding reconfigurable structures based on programmable active laminates. J. Mech. Robot. 8(3), 031015 (2016)
218.
Zurück zum Zitat P. Moghadas, R. Malak, D. Hartl, Reinforcement learning for control of a shape memory alloy based self-folding sheet, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46980 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A044 P. Moghadas, R. Malak, D. Hartl, Reinforcement learning for control of a shape memory alloy based self-folding sheet, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46980 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A044
219.
Zurück zum Zitat T.R. Halbert, An improved algorithm for sequential information-gathering decisions in design under uncertainty. Master’s thesis, Texas A&M University, College Station, TX, USA, 2015 T.R. Halbert, An improved algorithm for sequential information-gathering decisions in design under uncertainty. Master’s thesis, Texas A&M University, College Station, TX, USA, 2015
220.
Zurück zum Zitat D. Hartl, K. Lane, R. Malak, Design of a massively reconfigurable origami space structure incorporating shape memory alloys, in Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition IMECE, Paper No. IMECE2012-86391 (American Society of Mechanical Engineers, New York, 2012), p. 115–122 D. Hartl, K. Lane, R. Malak, Design of a massively reconfigurable origami space structure incorporating shape memory alloys, in Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition IMECE, Paper No. IMECE2012-86391 (American Society of Mechanical Engineers, New York, 2012), p. 115–122
221.
Zurück zum Zitat T. Halbert, E. Peraza Hernandez, R. Malak, D. Hartl, Numerically validated reduced-order model for laminates containing shape memory alloy wire meshes. J. Intell. Mater. Syst. Struct. (2015). https://doi.org/1045389X15595295 T. Halbert, E. Peraza Hernandez, R. Malak, D. Hartl, Numerically validated reduced-order model for laminates containing shape memory alloy wire meshes. J. Intell. Mater. Syst. Struct. (2015). https://​doi.​org/​1045389X15595295​
222.
Zurück zum Zitat E.A. Peraza Hernandez, B. Kiefer, D.J. Hartl, A. Menzel, D.C. Lagoudas, Analytical investigation of structurally stable configurations in shape memory alloy-actuated plates. Int. J. Solids Struct. 69, 442–458 (2015) E.A. Peraza Hernandez, B. Kiefer, D.J. Hartl, A. Menzel, D.C. Lagoudas, Analytical investigation of structurally stable configurations in shape memory alloy-actuated plates. Int. J. Solids Struct. 69, 442–458 (2015)
223.
Zurück zum Zitat E. Peraza Hernandez, D. Hartl, D. Lagoudas, Modeling of shape memory alloy wire meshes using effective lamina properties for improved analysis efficiency, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS 2013, Paper No. SMASIS2013-3094 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A009 E. Peraza Hernandez, D. Hartl, D. Lagoudas, Modeling of shape memory alloy wire meshes using effective lamina properties for improved analysis efficiency, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS 2013, Paper No. SMASIS2013-3094 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A009
224.
Zurück zum Zitat V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu, Shape Memory Alloys: Fundamentals, Modeling and Applications (Université du Québec. École de technologie supérieure, Québec, 2003) V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu, Shape Memory Alloys: Fundamentals, Modeling and Applications (Université du Québec. École de technologie supérieure, Québec, 2003)
225.
Zurück zum Zitat L.G. Machado, M.A. Savi, Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36(6), 683–691 (2003) L.G. Machado, M.A. Savi, Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36(6), 683–691 (2003)
226.
Zurück zum Zitat N.B. Morgan, Medical shape memory alloy applications—the market and its products. Mater. Sci. Eng. A 378(1), 16–23 (2004) N.B. Morgan, Medical shape memory alloy applications—the market and its products. Mater. Sci. Eng. A 378(1), 16–23 (2004)
227.
Zurück zum Zitat J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014) J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)
228.
Zurück zum Zitat G. Esquivel, D. Weiser, D. Hartl, D. Whitten, POP-OP: a shape memory-based morphing wall. Int. J. Archit. Comput. 11(3), 347–362 (2013) G. Esquivel, D. Weiser, D. Hartl, D. Whitten, POP-OP: a shape memory-based morphing wall. Int. J. Archit. Comput. 11(3), 347–362 (2013)
229.
Zurück zum Zitat J. Berry, J.H. Seo, Incorporation of shape memory polymers in interactive design, in Proceedings of the 21st International Symposium of Electronic Art ISEA, 2015 J. Berry, J.H. Seo, Incorporation of shape memory polymers in interactive design, in Proceedings of the 21st International Symposium of Electronic Art ISEA, 2015
230.
Zurück zum Zitat C. Schwesig, I. Poupyrev, E. Mori, Gummi: a bendable computer, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2004), pp. 263–270 C. Schwesig, I. Poupyrev, E. Mori, Gummi: a bendable computer, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2004), pp. 263–270
231.
Zurück zum Zitat J.-S. Park, T.-W. Kim, D. Stryakhilev, J.-S. Lee, S.-G. An, Y.-S. Pyo, D.-B. Lee, Y.G. Mo, D.-U. Jin, H.K. Chung, Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 95(1), 013503–013503 (2009) J.-S. Park, T.-W. Kim, D. Stryakhilev, J.-S. Lee, S.-G. An, Y.-S. Pyo, D.-B. Lee, Y.G. Mo, D.-U. Jin, H.K. Chung, Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 95(1), 013503–013503 (2009)
232.
Zurück zum Zitat B. Lahey, A. Girouard, W. Burleson, R. Vertegaal, PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2011), pp. 1303–1312 B. Lahey, A. Girouard, W. Burleson, R. Vertegaal, PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2011), pp. 1303–1312
233.
Zurück zum Zitat A. Minuto, A. Nijholt, Smart material interfaces as a methodology for interaction: a survey of SMIs’ state of the art and development, in Proceedings of the Second International Workshop on Smart Material Interfaces: Another Step to a Material Future (ACM, New York, 2013), pp. 1–6 A. Minuto, A. Nijholt, Smart material interfaces as a methodology for interaction: a survey of SMIs’ state of the art and development, in Proceedings of the Second International Workshop on Smart Material Interfaces: Another Step to a Material Future (ACM, New York, 2013), pp. 1–6
234.
Zurück zum Zitat A. Gomes, R. Vertegaal, PaperFold: evaluating shape changes for viewport transformations in foldable thin-film display devices, in Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction (ACM, New York, 2015), pp. 153–160 A. Gomes, R. Vertegaal, PaperFold: evaluating shape changes for viewport transformations in foldable thin-film display devices, in Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction (ACM, New York, 2015), pp. 153–160
235.
Zurück zum Zitat D. Tan, M. Kumorek, A.A. Garcia, A. Mooney, D. Bekoe, Projectagami: a foldable mobile device with shape interactive applications, in Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (ACM, New York, 2015), pp. 1555–1560 D. Tan, M. Kumorek, A.A. Garcia, A. Mooney, D. Bekoe, Projectagami: a foldable mobile device with shape interactive applications, in Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (ACM, New York, 2015), pp. 1555–1560
236.
Zurück zum Zitat L.-W. Kang, M.-F. Weng, C.-L. Jheng, C.-Y. Tseng, S.K. Ramesh, A. Gureja, H.-C. Hsu, C.-H. Yeh, Content-aware image retargeting for image display on foldable mobile devices. Procedia Comput. Sci. 56, 104–110 (2015) L.-W. Kang, M.-F. Weng, C.-L. Jheng, C.-Y. Tseng, S.K. Ramesh, A. Gureja, H.-C. Hsu, C.-H. Yeh, Content-aware image retargeting for image display on foldable mobile devices. Procedia Comput. Sci. 56, 104–110 (2015)
237.
Zurück zum Zitat H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer 54(9), 2199–2221 (2013) H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer 54(9), 2199–2221 (2013)
238.
Zurück zum Zitat Q. Li, Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications (Wiley, Hoboken, 2013) Q. Li, Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications (Wiley, Hoboken, 2013)
239.
Zurück zum Zitat A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7(4), 281–293 (2005) A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7(4), 281–293 (2005)
240.
Zurück zum Zitat F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens. Actuators A Phys. 151(2), 95–99 (2009) F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens. Actuators A Phys. 151(2), 95–99 (2009)
241.
Zurück zum Zitat V. Luchnikov, L. Ionov, M. Stamm, Self-rolled polymer tubes: novel tools for microfluidics, microbiology, and drug-delivery systems. Macromol. Rapid Commun. 32(24), 1943–1952 (2011) V. Luchnikov, L. Ionov, M. Stamm, Self-rolled polymer tubes: novel tools for microfluidics, microbiology, and drug-delivery systems. Macromol. Rapid Commun. 32(24), 1943–1952 (2011)
242.
Zurück zum Zitat L. Ionov, Nature-inspired stimuli-responsive self-folding materials, in Intelligent Stimuli-responsive Materials: From Well-defined Nanostructures to Applications (Wiley, Hoboken, 2013), pp. 1–16 L. Ionov, Nature-inspired stimuli-responsive self-folding materials, in Intelligent Stimuli-responsive Materials: From Well-defined Nanostructures to Applications (Wiley, Hoboken, 2013), pp. 1–16
243.
Zurück zum Zitat A.V. Prinz, V.Y. Prinz, Application of semiconductor micro-and nanotubes in biology. Surf. Sci. 532, 911–915 (2003) A.V. Prinz, V.Y. Prinz, Application of semiconductor micro-and nanotubes in biology. Surf. Sci. 532, 911–915 (2003)
244.
Zurück zum Zitat S. Ahmed, Z. Ounaies, E.A.F. Arrojado, Electric field-induced bending and folding of polymer sheets. Sens. Actuators A Phys. 260, 68–80 (2017) S. Ahmed, Z. Ounaies, E.A.F. Arrojado, Electric field-induced bending and folding of polymer sheets. Sens. Actuators A Phys. 260, 68–80 (2017)
245.
Zurück zum Zitat A. Diaz, J.I. Castillo, J.A. Logan, W.-Y. Lee, Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem. 129(1), 115–132 (1981) A. Diaz, J.I. Castillo, J.A. Logan, W.-Y. Lee, Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem. 129(1), 115–132 (1981)
246.
Zurück zum Zitat A.F. Diaz, B. Hall, Mechanical properties of electrochemically prepared polypyrrole films. IBM J. Res. Dev. 27(4), 342–347 (1983) A.F. Diaz, B. Hall, Mechanical properties of electrochemically prepared polypyrrole films. IBM J. Res. Dev. 27(4), 342–347 (1983)
247.
Zurück zum Zitat M. Farshad, A. Benine, Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004) M. Farshad, A. Benine, Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004)
248.
Zurück zum Zitat B.M. Cowan, Magnetically induced actuation and optimization of the Miura-ori structure. Master’s thesis, The Pennsylvania State University, 2015 B.M. Cowan, Magnetically induced actuation and optimization of the Miura-ori structure. Master’s thesis, The Pennsylvania State University, 2015
249.
Zurück zum Zitat R.J. Lang, A computational algorithm for origami design, in Proceedings of the Twelfth Annual Symposium on Computational Geometry (ACM, New York, 1996), pp. 98–105 R.J. Lang, A computational algorithm for origami design, in Proceedings of the Twelfth Annual Symposium on Computational Geometry (ACM, New York, 1996), pp. 98–105
250.
Zurück zum Zitat T.A. Evans, R.J. Lang, S.P. Magleby, L.L. Howell, Rigidly foldable origami gadgets and tessellations. R. Soc. Open Sci. 2(9), 150067 (2015) T.A. Evans, R.J. Lang, S.P. Magleby, L.L. Howell, Rigidly foldable origami gadgets and tessellations. R. Soc. Open Sci. 2(9), 150067 (2015)
251.
Zurück zum Zitat R.J. Lang, The tree method of origami design, in The Second International Meeting of Origami Science and Scientific Origami, ed. by K. Miura (Seian University of Art of Design, Otsu, 1994), pp. 72–82 R.J. Lang, The tree method of origami design, in The Second International Meeting of Origami Science and Scientific Origami, ed. by K. Miura (Seian University of Art of Design, Otsu, 1994), pp. 72–82
252.
Zurück zum Zitat R. Lang, Trees and circles: an efficient algorithm for origami design, in Proceedings of the 3rd International Meeting of Origami Science, Math, and Education, 2001 R. Lang, Trees and circles: an efficient algorithm for origami design, in Proceedings of the 3rd International Meeting of Origami Science, Math, and Education, 2001
253.
Zurück zum Zitat R.J. Lang, Origami Design Secrets: Mathematical Methods for an Ancient Art (CRC Press, Boca Raton, 2011) R.J. Lang, Origami Design Secrets: Mathematical Methods for an Ancient Art (CRC Press, Boca Raton, 2011)
255.
Zurück zum Zitat E.D. Demaine, M.L. Demaine, Recent results in computational origami, in Origami 3: Third International Meeting of Origami Mathematics, Science, and Education, 2002, pp. 3–16 E.D. Demaine, M.L. Demaine, Recent results in computational origami, in Origami 3: Third International Meeting of Origami Mathematics, Science, and Education, 2002, pp. 3–16
256.
Zurück zum Zitat E.D. Demaine, M.L. Demaine, J.S.B. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami. Comput. Geom. 16(1), 3–21 (2000) E.D. Demaine, M.L. Demaine, J.S.B. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami. Comput. Geom. 16(1), 3–21 (2000)
257.
Zurück zum Zitat K. Fuchi, A.R. Diaz, Origami design by topology optimization. J. Mech. Des. 135(11), 111003 (2013) K. Fuchi, A.R. Diaz, Origami design by topology optimization. J. Mech. Des. 135(11), 111003 (2013)
258.
Zurück zum Zitat M.P. Bendsoe, Topology Optimization: Theory, Methods and Applications (Springer, Berlin, 2003) M.P. Bendsoe, Topology Optimization: Theory, Methods and Applications (Springer, Berlin, 2003)
259.
Zurück zum Zitat W. Liu, K. Tai, Optimal design of flat patterns for 3D folded structures by unfolding with topological validation. Comput. Aided Des. 39(10), 898–913 (2007) W. Liu, K. Tai, Optimal design of flat patterns for 3D folded structures by unfolding with topological validation. Comput. Aided Des. 39(10), 898–913 (2007)
260.
Zurück zum Zitat W. Schlickenrieder, Nets of polyhedra. Master’s thesis, Technische Universität Berlin, 1997 W. Schlickenrieder, Nets of polyhedra. Master’s thesis, Technische Universität Berlin, 1997
261.
Zurück zum Zitat M. Bern, E.D. Demaine, D. Eppstein, E. Kuo, A. Mantler, J. Snoeyink, Ununfoldable polyhedra with convex faces. Comput. Geom. 24(2), 51–62 (2003) M. Bern, E.D. Demaine, D. Eppstein, E. Kuo, A. Mantler, J. Snoeyink, Ununfoldable polyhedra with convex faces. Comput. Geom. 24(2), 51–62 (2003)
262.
Zurück zum Zitat T. Tachi, 3D origami design based on tucking molecule, in Origami 4, Fourth International Meeting of Origami Science, Mathematics, and Education, 2009, pp. 259–272 T. Tachi, 3D origami design based on tucking molecule, in Origami 4, Fourth International Meeting of Origami Science, Mathematics, and Education, 2009, pp. 259–272
264.
Zurück zum Zitat B.J. Edmondson, R.J. Lang, M.R. Morgan, S.P. Magleby, L.L. Howell, Thick rigidly foldable structures realized by an offset panel technique, in Origami 6: I. Mathematics, 2015, p. 149 B.J. Edmondson, R.J. Lang, M.R. Morgan, S.P. Magleby, L.L. Howell, Thick rigidly foldable structures realized by an offset panel technique, in Origami 6: I. Mathematics, 2015, p. 149
265.
Zurück zum Zitat T. Tachi, Rigid-foldable thick origami, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 253–264 T. Tachi, Rigid-foldable thick origami, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 253–264
266.
Zurück zum Zitat Y. Chen, R. Peng, Z. You, Origami of thick panels. Science 349(6246), 396–400 (2015) Y. Chen, R. Peng, Z. You, Origami of thick panels. Science 349(6246), 396–400 (2015)
267.
Zurück zum Zitat S.A. Zirbel, M.E. Wilson, S.P. Magleby, L.L. Howell, An origami-inspired self-deployable array, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2013-3296, Snowbird, UT, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A026 S.A. Zirbel, M.E. Wilson, S.P. Magleby, L.L. Howell, An origami-inspired self-deployable array, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2013-3296, Snowbird, UT, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A026
268.
Zurück zum Zitat S.A. Zirbel, B.P. Trease, M.W. Thomson, R.J. Lang, S.P. Magleby, L.H. Howell, HanaFlex: a large solar array for space applications, in Proceedings of SPIE, vol. 9467, 2015, p. 94671C–94671C–9 S.A. Zirbel, B.P. Trease, M.W. Thomson, R.J. Lang, S.P. Magleby, L.H. Howell, HanaFlex: a large solar array for space applications, in Proceedings of SPIE, vol. 9467, 2015, p. 94671C–94671C–9
269.
Zurück zum Zitat J.S. Ku, E.D. Demaine, Folding flat crease patterns with thick materials, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-48039 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A056 J.S. Ku, E.D. Demaine, Folding flat crease patterns with thick materials, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-48039 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A056
270.
Zurück zum Zitat J.S. Ku, E.D. Demaine, Folding flat crease patterns with thick materials. J. Mech. Robot. 8(3), 031003 (2016) J.S. Ku, E.D. Demaine, Folding flat crease patterns with thick materials. J. Mech. Robot. 8(3), 031003 (2016)
271.
Zurück zum Zitat K. Fuchi, P.R. Buskohl, G. Bazzan, M.F. Durstock, G.W. Reich, R.A. Vaia, J.J. Joo, Origami actuator design and networking through crease topology optimization. J. Mech. Des. 137(9), 091401 (2015) K. Fuchi, P.R. Buskohl, G. Bazzan, M.F. Durstock, G.W. Reich, R.A. Vaia, J.J. Joo, Origami actuator design and networking through crease topology optimization. J. Mech. Des. 137(9), 091401 (2015)
272.
Zurück zum Zitat K. Saito, A. Tsukahara, Y. Okabe, Designing of self-deploying origami structures using geometrically misaligned crease patterns. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2185), 20150235 (2016) K. Saito, A. Tsukahara, Y. Okabe, Designing of self-deploying origami structures using geometrically misaligned crease patterns. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2185), 20150235 (2016)
273.
Zurück zum Zitat D.A. McAdams, W. Li, A novel method to design and optimize flat-foldable origami structures through a genetic algorithm. J. Comput. Inf. Sci. Eng. 14(3), 031008 (2014) D.A. McAdams, W. Li, A novel method to design and optimize flat-foldable origami structures through a genetic algorithm. J. Comput. Inf. Sci. Eng. 14(3), 031008 (2014)
274.
Zurück zum Zitat S. Ishida, T. Nojima, I. Hagiwara, Application of conformal maps to origami-based structures: New method to design deployable circular membranes, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12725, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A035 S. Ishida, T. Nojima, I. Hagiwara, Application of conformal maps to origami-based structures: New method to design deployable circular membranes, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12725, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A035
275.
Zurück zum Zitat K. Zhu, C. Deshan, O.N.N. Fernando, Snap-n-Fold: origami pattern generation based real-life object structure, in CHI’12 Extended Abstracts on Human Factors in Computing Systems (ACM, New York, 2012), pp. 2345–2350 K. Zhu, C. Deshan, O.N.N. Fernando, Snap-n-Fold: origami pattern generation based real-life object structure, in CHI’12 Extended Abstracts on Human Factors in Computing Systems (ACM, New York, 2012), pp. 2345–2350
276.
Zurück zum Zitat T. Tachi, Designing rigidly foldable horns using Bricard’s octahedron. J. Mech. Robot. 8(3), 031008 (2016) T. Tachi, Designing rigidly foldable horns using Bricard’s octahedron. J. Mech. Robot. 8(3), 031008 (2016)
277.
Zurück zum Zitat R.J. Lang, S. Magleby, L. Howell, Single degree-of-freedom rigidly foldable cut origami flashers. J. Mech. Robot. 8(3), 031005 (2016) R.J. Lang, S. Magleby, L. Howell, Single degree-of-freedom rigidly foldable cut origami flashers. J. Mech. Robot. 8(3), 031005 (2016)
278.
Zurück zum Zitat T. Tachi, Simulation of rigid origami. Origami 4, Fourth International Meeting of Origami Science, Mathematics, and Education, 2009, pp. 175–187 T. Tachi, Simulation of rigid origami. Origami 4, Fourth International Meeting of Origami Science, Mathematics, and Education, 2009, pp. 175–187
279.
Zurück zum Zitat T. Ida, H. Takahashi, M. Marin, A. Kasem, F. Ghourabi, Computational origami system Eos, in Origami 4: Proceedings of 4th International Conference on Origami, Science, Mathematics and Education, 2009, pp. 285–293 T. Ida, H. Takahashi, M. Marin, A. Kasem, F. Ghourabi, Computational origami system Eos, in Origami 4: Proceedings of 4th International Conference on Origami, Science, Mathematics and Education, 2009, pp. 285–293
280.
Zurück zum Zitat H. Huzita, Axiomatic development of origami geometry, in Proceedings of the First International Meeting of Origami Science and Technology, 1989, pp. 143–158 H. Huzita, Axiomatic development of origami geometry, in Proceedings of the First International Meeting of Origami Science and Technology, 1989, pp. 143–158
281.
Zurück zum Zitat R.C. Alperin, R.J. Lang, One-, two-, and multi-fold origami axioms, in Origami 4: Proceedings of 4th International Conference on Origami, Science, Mathematics and Education, 2009, pp. 371–393 R.C. Alperin, R.J. Lang, One-, two-, and multi-fold origami axioms, in Origami 4: Proceedings of 4th International Conference on Origami, Science, Mathematics and Education, 2009, pp. 371–393
282.
Zurück zum Zitat T. Hull, Project origami: Activities for Exploring Mathematics (CRC Press, Boca Raton, 2012) T. Hull, Project origami: Activities for Exploring Mathematics (CRC Press, Boca Raton, 2012)
283.
Zurück zum Zitat A. Kasem, F. Ghourabi, T. Ida, Origami axioms and circle extension, in Proceedings of the 2011 ACM Symposium on Applied Computing (ACM, New York, 2011), pp. 1106–1111 A. Kasem, F. Ghourabi, T. Ida, Origami axioms and circle extension, in Proceedings of the 2011 ACM Symposium on Applied Computing (ACM, New York, 2011), pp. 1106–1111
284.
Zurück zum Zitat F. Ghourabi, T. Ida, H. Takahashi, M. Marin, A. Kasem, Logical and algebraic view of Huzita’s origami axioms with applications to computational origami, in Proceedings of the 2007 ACM Symposium on Applied Computing (ACM, New York, 2007), pp. 767–772 F. Ghourabi, T. Ida, H. Takahashi, M. Marin, A. Kasem, Logical and algebraic view of Huzita’s origami axioms with applications to computational origami, in Proceedings of the 2007 ACM Symposium on Applied Computing (ACM, New York, 2007), pp. 767–772
285.
Zurück zum Zitat W. Wu, Z. You, Modelling rigid origami with quaternions and dual quaternions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 466(2119), 2155–2174 (2010) W. Wu, Z. You, Modelling rigid origami with quaternions and dual quaternions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 466(2119), 2155–2174 (2010)
286.
Zurück zum Zitat E.A. Peraza Hernandez, D.J. Hartl, D.C. Lagoudas, Kinematics of origami structures with smooth folds. J. Mech. Robot. 8(6), 061019 (2016) E.A. Peraza Hernandez, D.J. Hartl, D.C. Lagoudas, Kinematics of origami structures with smooth folds. J. Mech. Robot. 8(6), 061019 (2016)
287.
Zurück zum Zitat E.D. Demaine, M.L. Demaine, Recent results in computational origami, in Proceedings of the 3rd International Meeting of Origami Science, Math, and Education Citeseer, 2001, pp. 3–16 E.D. Demaine, M.L. Demaine, Recent results in computational origami, in Proceedings of the 3rd International Meeting of Origami Science, Math, and Education Citeseer, 2001, pp. 3–16
288.
Zurück zum Zitat M.S. Moses, M.K. Ackerman, G.S. Chirikjian, Origami rotors: imparting continuous rotation to a moving platform using compliant flexure hinges, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, paper No. DETC2013-12753, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A037 M.S. Moses, M.K. Ackerman, G.S. Chirikjian, Origami rotors: imparting continuous rotation to a moving platform using compliant flexure hinges, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, paper No. DETC2013-12753, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A037
289.
Zurück zum Zitat S.-M. Belcastro, T.C. Hull, A mathematical model for non-flat origami, in Origami 3: Third International Meeting of Origami Mathematics, Science, and Education, 2002, pp. 39–51 S.-M. Belcastro, T.C. Hull, A mathematical model for non-flat origami, in Origami 3: Third International Meeting of Origami Mathematics, Science, and Education, 2002, pp. 39–51
290.
Zurück zum Zitat S.-M. Belcastro, T.C. Hull, Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra Appl. 348(1–3), 273–282 (2002) S.-M. Belcastro, T.C. Hull, Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra Appl. 348(1–3), 273–282 (2002)
293.
Zurück zum Zitat T. Tachi, Freeform variations of origami. J. Geom. Graph. 14(2), 203–215 (2010) T. Tachi, Freeform variations of origami. J. Geom. Graph. 14(2), 203–215 (2010)
294.
Zurück zum Zitat A. Kasem, T. Ida, H. Takahashi, M. Marin, F. Ghourabi, E-origami system Eos, in Proceedings of the Annual Symposium of Japan Society for Software Science and Technology, JSSST, Tokyo, Japan (September 2006) A. Kasem, T. Ida, H. Takahashi, M. Marin, F. Ghourabi, E-origami system Eos, in Proceedings of the Annual Symposium of Japan Society for Software Science and Technology, JSSST, Tokyo, Japan (September 2006)
295.
Zurück zum Zitat T. Ida, H. Takahashi, M. Marin, F. Ghourabi, Modeling origami for computational construction and beyond, in Computational Science and Its Applications–ICCSA 2007 (Springer, 2007), pp. 653–665 T. Ida, H. Takahashi, M. Marin, F. Ghourabi, Modeling origami for computational construction and beyond, in Computational Science and Its Applications–ICCSA 2007 (Springer, 2007), pp. 653–665
296.
Zurück zum Zitat A. Kasem, T. Ida, Computational origami environment on the web. Front. Comput. Sci. China 2(1), 39–54 (2008)CrossRef A. Kasem, T. Ida, Computational origami environment on the web. Front. Comput. Sci. China 2(1), 39–54 (2008)CrossRef
297.
Zurück zum Zitat M. Schenk, S.D. Guest, Origami folding: a structural engineering approach, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 291–304 M. Schenk, S.D. Guest, Origami folding: a structural engineering approach, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 291–304
298.
Zurück zum Zitat A.R. Diaz, Origami folding and bar frameworks, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34149 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A031 A.R. Diaz, Origami folding and bar frameworks, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34149 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A031
299.
Zurück zum Zitat A.A. Evans, J.L. Silverberg, C.D. Santangelo, Lattice mechanics of origami tessellations. Phys. Rev. E 92(1), 013205 (2015) A.A. Evans, J.L. Silverberg, C.D. Santangelo, Lattice mechanics of origami tessellations. Phys. Rev. E 92(1), 013205 (2015)
300.
Zurück zum Zitat K. Fuchi, P.R. Buskohl, G. Bazzan, M.F. Durstock, G.W. Reich, R.A. Vaia, J.J. Joo, Design optimization challenges of origami-based mechanisms with sequenced folding. J. Mech. Robot. 8(5), 051011 (2016) K. Fuchi, P.R. Buskohl, G. Bazzan, M.F. Durstock, G.W. Reich, R.A. Vaia, J.J. Joo, Design optimization challenges of origami-based mechanisms with sequenced folding. J. Mech. Robot. 8(5), 051011 (2016)
301.
Zurück zum Zitat K. Saito, A. Tsukahara, Y. Okabe, New deployable structures based on an elastic origami model. J. Mech. Des. 137(2), 021402 (2015) K. Saito, A. Tsukahara, Y. Okabe, New deployable structures based on an elastic origami model. J. Mech. Des. 137(2), 021402 (2015)
302.
Zurück zum Zitat Y. Nakada, Y. Fujieda, T. Mori, H. Iwai, K. Nakaya, R. Uehara, M. Yamabe, On a stiffness model for origami folding, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46731 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A039 Y. Nakada, Y. Fujieda, T. Mori, H. Iwai, K. Nakaya, R. Uehara, M. Yamabe, On a stiffness model for origami folding, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46731 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A039
303.
Zurück zum Zitat S. Heimbs, Virtual testing of sandwich core structures using dynamic finite element simulations. Comput. Mater. Sci. 45(2), 205–216 (2009)CrossRef S. Heimbs, Virtual testing of sandwich core structures using dynamic finite element simulations. Comput. Mater. Sci. 45(2), 205–216 (2009)CrossRef
304.
Zurück zum Zitat J. Ma, Z. You, Energy absorption of thin-walled beams with a pre-folded origami pattern. Thin Walled Struct. 73, 198–206 (2013)CrossRef J. Ma, Z. You, Energy absorption of thin-walled beams with a pre-folded origami pattern. Thin Walled Struct. 73, 198–206 (2013)CrossRef
305.
Zurück zum Zitat J. Song, Y. Chen, G. Lu, Axial crushing of thin-walled structures with origami patterns. Thin Walled Struct. 54, 65–71 (2012)CrossRef J. Song, Y. Chen, G. Lu, Axial crushing of thin-walled structures with origami patterns. Thin Walled Struct. 54, 65–71 (2012)CrossRef
306.
Zurück zum Zitat Y. Li, Z. You, Thin-walled open-section origami beams for energy absorption, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35204 (American Society of Mechanical Engineers, New York, 2014), p. V003T01A014 Y. Li, Z. You, Thin-walled open-section origami beams for energy absorption, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35204 (American Society of Mechanical Engineers, New York, 2014), p. V003T01A014
307.
Zurück zum Zitat C. Qiu, V. Aminzadeh, J.S. Dai, Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013) C. Qiu, V. Aminzadeh, J.S. Dai, Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013)
308.
Zurück zum Zitat C. Qiu, V. Aminzadeh, J.S. Dai, Kinematic and stiffness analysis of an origami-type carton, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12343, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A026 C. Qiu, V. Aminzadeh, J.S. Dai, Kinematic and stiffness analysis of an origami-type carton, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12343, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A026
309.
Zurück zum Zitat J.T. Oden, J.N. Reddy, An Introduction to the Mathematical Theory of Finite Elements (Dover Publications, Mineola, 2012)MATH J.T. Oden, J.N. Reddy, An Introduction to the Mathematical Theory of Finite Elements (Dover Publications, Mineola, 2012)MATH
310.
Zurück zum Zitat J.N. Reddy, An Introduction to the Finite Element Method, vol. 2 (McGraw-Hill, New York, 1993) J.N. Reddy, An Introduction to the Finite Element Method, vol. 2 (McGraw-Hill, New York, 1993)
311.
Zurück zum Zitat J.N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis (CRC Press, Boca Raton, 1997)MATH J.N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis (CRC Press, Boca Raton, 1997)MATH
312.
Zurück zum Zitat E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002)MathSciNetCrossRef E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002)MathSciNetCrossRef
313.
Zurück zum Zitat H.T.Y. Yang, S. Saigal, A. Masud, R.K. Kapania, A survey of recent shell finite elements. Int. J. Numer. Methods Eng. 47(1–3), 101–127 (2000)MathSciNetCrossRef H.T.Y. Yang, S. Saigal, A. Masud, R.K. Kapania, A survey of recent shell finite elements. Int. J. Numer. Methods Eng. 47(1–3), 101–127 (2000)MathSciNetCrossRef
314.
Zurück zum Zitat J. Ma, D. Hou, Y. Chen, Z. You, Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation. Thin Walled Struct. 100, 38–47 (2016)CrossRef J. Ma, D. Hou, Y. Chen, Z. You, Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation. Thin Walled Struct. 100, 38–47 (2016)CrossRef
315.
Zurück zum Zitat D. Hou, Y. Chen, J. Ma, Z. You, Axial crushing of thin-walled tubes with kite-shape pattern, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46671 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A037 D. Hou, Y. Chen, J. Ma, Z. You, Axial crushing of thin-walled tubes with kite-shape pattern, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46671 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A037
316.
Zurück zum Zitat K. Yang, S. Xu, J. Shen, S. Zhou, Y.M. Xie, Energy absorption of thin-walled tubes with pre-folded origami patterns: numerical simulation and experimental verification. Thin Walled Struct. 103, 33–44 (2016)CrossRef K. Yang, S. Xu, J. Shen, S. Zhou, Y.M. Xie, Energy absorption of thin-walled tubes with pre-folded origami patterns: numerical simulation and experimental verification. Thin Walled Struct. 103, 33–44 (2016)CrossRef
317.
Zurück zum Zitat S. Heimbs, P. Middendorf, S. Kilchert, A.F. Johnson, M. Maier, Experimental and numerical analysis of composite folded sandwich core structures under compression. Appl. Compos. Mater. 14(5–6), 363–377 (2007)CrossRef S. Heimbs, P. Middendorf, S. Kilchert, A.F. Johnson, M. Maier, Experimental and numerical analysis of composite folded sandwich core structures under compression. Appl. Compos. Mater. 14(5–6), 363–377 (2007)CrossRef
318.
Zurück zum Zitat R.W. Mailen, M.D. Dickey, J. Genzer, M.A. Zikry, A fully coupled thermo-viscoelastic finite element model for self-folding shape memory polymer sheets. J. Polym. Sci. Part B Polym. Phys. 55(16), 1207–1219 (2017)CrossRef R.W. Mailen, M.D. Dickey, J. Genzer, M.A. Zikry, A fully coupled thermo-viscoelastic finite element model for self-folding shape memory polymer sheets. J. Polym. Sci. Part B Polym. Phys. 55(16), 1207–1219 (2017)CrossRef
319.
Zurück zum Zitat E. Peraza Hernandez, D. Hartl, E. Galvan, R. Malak, Design and optimization of a shape memory alloy-based self-folding sheet. J. Mech. Des. 135(11), 111007 (2013) E. Peraza Hernandez, D. Hartl, E. Galvan, R. Malak, Design and optimization of a shape memory alloy-based self-folding sheet. J. Mech. Des. 135(11), 111007 (2013)
320.
Zurück zum Zitat E. Peraza Hernandez, K. Frei, D. Hartl, D. Lagoudas, Folding patterns and shape optimization using SMA-based self-folding laminates. Proc. SPIE 9057, 90571G–90571G–13 (2014) E. Peraza Hernandez, K. Frei, D. Hartl, D. Lagoudas, Folding patterns and shape optimization using SMA-based self-folding laminates. Proc. SPIE 9057, 90571G–90571G–13 (2014)
322.
Zurück zum Zitat M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22(31), 3388–3410 (2010)CrossRef M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22(31), 3388–3410 (2010)CrossRef
323.
Zurück zum Zitat A. Firouzeh, Y. Sun, H. Lee, J. Paik, Sensor and actuator integrated low profile robotic origami, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 4937–4944 A. Firouzeh, Y. Sun, H. Lee, J. Paik, Sensor and actuator integrated low profile robotic origami, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 4937–4944
324.
Zurück zum Zitat J.C. Athas, C.P. Nguyen, B.C. Zarket, A. Gargava, Z. Nie, S.R. Raghavan, Enzyme-triggered folding of hydrogels: Toward a mimic of the Venus Flytrap. ACS Appl. Mater. Interfaces 8(29), 19066–19074 (2016)CrossRef J.C. Athas, C.P. Nguyen, B.C. Zarket, A. Gargava, Z. Nie, S.R. Raghavan, Enzyme-triggered folding of hydrogels: Toward a mimic of the Venus Flytrap. ACS Appl. Mater. Interfaces 8(29), 19066–19074 (2016)CrossRef
Metadaten
Titel
Introduction to Active Origami Structures
verfasst von
Edwin A. Peraza Hernandez
Darren J. Hartl
Dimitris C. Lagoudas
Copyright-Jahr
2019
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-91866-2_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.