Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 17/2018

16.07.2018

Free-standing and binder-free electrochemical capacitor electrode based on hierarchical microfibrous carbon–graphene–Mn3O4 nanocomposites materials

verfasst von: Zineb Nabti, Tarik Bordjiba, Sujittra Poorahong, Amel Boudjemaa, Ali Benayahoum, Mohamed Siaj, Khaldoun Bachari

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hierarchical microfibers carbon–graphene–Mn3O4 (MFC–G–Mn3O4) nanocomposites have been successfully prepared via a simple, effective, and scalable chemical deposition method. It was applied as a free-standing and binder-free electrodes for an electrochemical capacitor. The graphene was first synthesized by electrochemical exfoliation of graphite rods and deposited on the microfibers carbon using gradually drop of the temperature until 150 °C to form MFC–G electrode. Then the Mn3O4 was prepared by direct redox depositions on MFC–G substrate at the temperature of 150 °C to form MFC–G–Mn3O4. For comparison purposes, the Mn3O4 was deposited directly on MFC to form MFC–Mn3O4 electrode under similar conditions. The synthesized materials were characterized by using scanning electronic microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy techniques. The results from different characterization techniques indicate that the graphene and Mn3O4 were successfully synthesized and deposited on substrates. The specific capacitance of the electrode MFC–G–Mn3O4 reached 414 F g−1, this is five times greater than that obtained capacitance from the electrode MFC–Mn3O4 which is 83 F g−1. In addition, the introduction of graphene in the matrix of Mn3O4 allows an improvement of contact resistance between the active material and the current collector, electronic conductivity of the electrode, and stability over GCD cycling. The specific capacitance of the MFC–G–Mn3O4 is one of the highest values recorded in the literature of Mn3O4 based materials. Combination of the graphene and Mn3O4 using the direct deposition resulted in efficient synergetic effect between the two materials. The facile synthesis techniques and the good capacitive performances indicate that the developed nanocomposite electrode would be promising as electrode materials for the high-performance electrochemical capacitor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef
2.
Zurück zum Zitat T. Brousse et al., Springer Handbook of Electrochemical Energy (Springer, Heidelberg, 2017), pp. 495–561CrossRef T. Brousse et al., Springer Handbook of Electrochemical Energy (Springer, Heidelberg, 2017), pp. 495–561CrossRef
3.
Zurück zum Zitat B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 2013) B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 2013)
4.
Zurück zum Zitat T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20, 815–819 (2008)CrossRef T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20, 815–819 (2008)CrossRef
6.
Zurück zum Zitat A.J. Gibson, K.G. Latham, R.C. Burns, S.W. Donne, Electrodeposition mechanism of cathodically-prepared manganese dioxide thin films from permanganate for use in electrochemical capacitors. Electrochim. Acta 236, 198–211 (2017)CrossRef A.J. Gibson, K.G. Latham, R.C. Burns, S.W. Donne, Electrodeposition mechanism of cathodically-prepared manganese dioxide thin films from permanganate for use in electrochemical capacitors. Electrochim. Acta 236, 198–211 (2017)CrossRef
7.
Zurück zum Zitat Z. Fan et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011)CrossRef Z. Fan et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011)CrossRef
8.
Zurück zum Zitat M. Sawangphruk et al., High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60, 109–116 (2013)CrossRef M. Sawangphruk et al., High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60, 109–116 (2013)CrossRef
9.
Zurück zum Zitat G. Yu et al., Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)CrossRef G. Yu et al., Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)CrossRef
10.
Zurück zum Zitat R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)CrossRef R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)CrossRef
11.
Zurück zum Zitat T. Bordjiba, M. Mohamedi, Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites. J. Solid State Electrochem. 15, 765–771 (2010)CrossRef T. Bordjiba, M. Mohamedi, Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites. J. Solid State Electrochem. 15, 765–771 (2010)CrossRef
12.
Zurück zum Zitat S. Shivakumara, N. Munichandraiah, Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte. Solid State Commun. 260, 34–39 (2017)CrossRef S. Shivakumara, N. Munichandraiah, Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte. Solid State Commun. 260, 34–39 (2017)CrossRef
13.
Zurück zum Zitat T. Bordjiba, M. Mohamedi, L.H. Dao, Novel binderless nanostructured carbon nanotubes-carbon aerogel composites for electrochemical double layer capacitors. ECS Trans. 6, 183–189 (2008)CrossRef T. Bordjiba, M. Mohamedi, L.H. Dao, Novel binderless nanostructured carbon nanotubes-carbon aerogel composites for electrochemical double layer capacitors. ECS Trans. 6, 183–189 (2008)CrossRef
14.
Zurück zum Zitat W. He et al., Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242–250 (2017)CrossRef W. He et al., Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242–250 (2017)CrossRef
15.
Zurück zum Zitat C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510–1525 (2017)CrossRef C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510–1525 (2017)CrossRef
16.
Zurück zum Zitat M. Tebyetekerwa et al., Unveiling polyindole: freestanding as-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors. Electrochim. Acta 247, 400–409 (2017)CrossRef M. Tebyetekerwa et al., Unveiling polyindole: freestanding as-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors. Electrochim. Acta 247, 400–409 (2017)CrossRef
17.
Zurück zum Zitat J. Xian et al., Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J. Electrical Eng. 4, 75–87 (2016) J. Xian et al., Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J. Electrical Eng. 4, 75–87 (2016)
18.
Zurück zum Zitat Y. Guetteche, Development of composite material based on porous microfibrous carbon and zinc oxide for energy storage application. Int. J. Electrochem. Sci. 12, 1874–1884 (2017)CrossRef Y. Guetteche, Development of composite material based on porous microfibrous carbon and zinc oxide for energy storage application. Int. J. Electrochem. Sci. 12, 1874–1884 (2017)CrossRef
20.
Zurück zum Zitat J.-J. Jhao et al., The coaxial nanostructure of ruthenium oxide thin films coated onto the vertically grown graphitic nanofibers for electrochemical supercapacitor. Surf. Coat. Technol. 320, 263–269 (2017)CrossRef J.-J. Jhao et al., The coaxial nanostructure of ruthenium oxide thin films coated onto the vertically grown graphitic nanofibers for electrochemical supercapacitor. Surf. Coat. Technol. 320, 263–269 (2017)CrossRef
22.
Zurück zum Zitat T. Bordjiba, D. Bélanger, Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochim. Acta 55, 3428–3433 (2010)CrossRef T. Bordjiba, D. Bélanger, Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochim. Acta 55, 3428–3433 (2010)CrossRef
23.
Zurück zum Zitat G. Nagaraju, R. Kakarla, S.M. Cha, J.S. Yu, Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage. Nano Res. 8, 3749–3763 (2015)CrossRef G. Nagaraju, R. Kakarla, S.M. Cha, J.S. Yu, Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage. Nano Res. 8, 3749–3763 (2015)CrossRef
24.
Zurück zum Zitat A.V. Thakur, B.J. Lokhande, Effect of dip time on the electrochemical behavior of PPy-Cu(OH)2 hybrid electrodes synthesized using pyrrole and CuSO4. e-Polymers 17, 167–173 (2017)CrossRef A.V. Thakur, B.J. Lokhande, Effect of dip time on the electrochemical behavior of PPy-Cu(OH)2 hybrid electrodes synthesized using pyrrole and CuSO4. e-Polymers 17, 167–173 (2017)CrossRef
25.
Zurück zum Zitat A. Thakur, B. Lokhande, Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu(OH)2 hybrid electrodes for supercapacitors. J. Solid State Electrochem. 21, 2577–2584 (2017)CrossRef A. Thakur, B. Lokhande, Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu(OH)2 hybrid electrodes for supercapacitors. J. Solid State Electrochem. 21, 2577–2584 (2017)CrossRef
26.
Zurück zum Zitat A. Thakur, B. Lokhande, C10H8N2-PPy hybrid flexible electrodes: SILAR synthesis and electrochemical study. J. Mater. Sci.: Mater. Electron. 29, 1630–1635 (2018) A. Thakur, B. Lokhande, C10H8N2-PPy hybrid flexible electrodes: SILAR synthesis and electrochemical study. J. Mater. Sci.: Mater. Electron. 29, 1630–1635 (2018)
27.
Zurück zum Zitat S. Ghasemi, R. Hosseinzadeh, M. Jafari, MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor. Int. J. Hydrog. Energy 40, 1037–1046 (2015)CrossRef S. Ghasemi, R. Hosseinzadeh, M. Jafari, MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor. Int. J. Hydrog. Energy 40, 1037–1046 (2015)CrossRef
28.
Zurück zum Zitat R. Ingole, B. Lokhande, Nanoporous vanadium oxide network prepared by spray pyrolysis. Mater. Lett. 168, 95–98 (2016)CrossRef R. Ingole, B. Lokhande, Nanoporous vanadium oxide network prepared by spray pyrolysis. Mater. Lett. 168, 95–98 (2016)CrossRef
29.
Zurück zum Zitat A.V. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO(OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap. 72, 1407–1415 (2018)CrossRef A.V. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO(OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap. 72, 1407–1415 (2018)CrossRef
30.
Zurück zum Zitat A. Thakur, B. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge. J. Mater. Sci.: Mater. Electron. 28, 11755–11761 (2017) A. Thakur, B. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge. J. Mater. Sci.: Mater. Electron. 28, 11755–11761 (2017)
31.
Zurück zum Zitat H.W. Chang et al., Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor. Phys. Chem. Chem. Phys. 18, 18705–18718 (2016)CrossRef H.W. Chang et al., Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor. Phys. Chem. Chem. Phys. 18, 18705–18718 (2016)CrossRef
32.
Zurück zum Zitat H. Chen, S. Zhou, L. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl. Mater. Interfaces 6, 8621–8630 (2014)CrossRef H. Chen, S. Zhou, L. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl. Mater. Interfaces 6, 8621–8630 (2014)CrossRef
33.
Zurück zum Zitat R. Ambare, S. Bharadwaj, B. Lokhande, Electrochemical characterization of Mn:Co3O4 thin films prepared by spray pyrolysis via aqueous route. Curr. Appl. Phys. 14, 1582–1590 (2014)CrossRef R. Ambare, S. Bharadwaj, B. Lokhande, Electrochemical characterization of Mn:Co3O4 thin films prepared by spray pyrolysis via aqueous route. Curr. Appl. Phys. 14, 1582–1590 (2014)CrossRef
34.
Zurück zum Zitat R. Ambare, S. Bharadwaj, B. Lokhande, Spray pyrolysed Mn:Co3O4 thin film electrodes via non-aqueous route and their electrochemical parameter measurements. Measurement 88, 66–76 (2016)CrossRef R. Ambare, S. Bharadwaj, B. Lokhande, Spray pyrolysed Mn:Co3O4 thin film electrodes via non-aqueous route and their electrochemical parameter measurements. Measurement 88, 66–76 (2016)CrossRef
35.
Zurück zum Zitat Q. Cheng et al., Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)CrossRef Q. Cheng et al., Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)CrossRef
36.
Zurück zum Zitat H.-M. Lee, G.H. Jeong, D.W. Kang, S.-W. Kim, C.-K. Kim, Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. J. Power Sources 281, 44–48 (2015)CrossRef H.-M. Lee, G.H. Jeong, D.W. Kang, S.-W. Kim, C.-K. Kim, Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. J. Power Sources 281, 44–48 (2015)CrossRef
37.
Zurück zum Zitat Z.-S. Wu et al., High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010)CrossRef Z.-S. Wu et al., High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010)CrossRef
38.
Zurück zum Zitat M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRef M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRef
39.
Zurück zum Zitat T.-H. Wu et al., Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. J. Mater. Chem. A 3, 12786–12795 (2015)CrossRef T.-H. Wu et al., Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. J. Mater. Chem. A 3, 12786–12795 (2015)CrossRef
40.
Zurück zum Zitat W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRef W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRef
41.
Zurück zum Zitat K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
42.
Zurück zum Zitat A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)CrossRef
43.
Zurück zum Zitat D.A. Brownson, C.E. Banks, CVD graphene electrochemistry: the role of graphitic islands. Phys. Chem. Chem. Phys. 13, 15825–15828 (2011)CrossRef D.A. Brownson, C.E. Banks, CVD graphene electrochemistry: the role of graphitic islands. Phys. Chem. Chem. Phys. 13, 15825–15828 (2011)CrossRef
44.
Zurück zum Zitat M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRef M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRef
45.
Zurück zum Zitat C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
46.
Zurück zum Zitat Q. Chen et al., MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 247, 32–39 (2014)CrossRef Q. Chen et al., MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 247, 32–39 (2014)CrossRef
47.
Zurück zum Zitat J. Deng, X. Wang, X. Duan, P. Liu, Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain. Chem. Eng. 3, 1330–1338 (2015)CrossRef J. Deng, X. Wang, X. Duan, P. Liu, Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain. Chem. Eng. 3, 1330–1338 (2015)CrossRef
49.
Zurück zum Zitat S.-W. Lee et al., Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J. Phys. Chem. C 118, 2834–2843 (2014)CrossRef S.-W. Lee et al., Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J. Phys. Chem. C 118, 2834–2843 (2014)CrossRef
50.
Zurück zum Zitat Y. Li et al., Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J. Power Sources 279, 138–145 (2015)CrossRef Y. Li et al., Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J. Power Sources 279, 138–145 (2015)CrossRef
51.
Zurück zum Zitat M. Ramezani, M. Fathi, F. Mahboubi, Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications. Electrochim. Acta 174, 345–355 (2015)CrossRef M. Ramezani, M. Fathi, F. Mahboubi, Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications. Electrochim. Acta 174, 345–355 (2015)CrossRef
52.
Zurück zum Zitat A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 25, 2809–2815 (2013)CrossRef A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 25, 2809–2815 (2013)CrossRef
53.
Zurück zum Zitat C. Xiong et al., Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J. Power Sources 306, 602–610 (2016)CrossRef C. Xiong et al., Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J. Power Sources 306, 602–610 (2016)CrossRef
54.
Zurück zum Zitat M. Yang, B.G. Choi, Rapid one-step synthesis of conductive and porous MnO2/graphene nanocomposite for high performance supercapacitors. J. Electroanal. Chem. 776, 134–138 (2016)CrossRef M. Yang, B.G. Choi, Rapid one-step synthesis of conductive and porous MnO2/graphene nanocomposite for high performance supercapacitors. J. Electroanal. Chem. 776, 134–138 (2016)CrossRef
56.
Zurück zum Zitat Y. Zhao, M.P. Li, S. Liu, M.F. Islam, Superelastic pseudocapacitors from freestanding MnO2-decorated graphene-coated carbon nanotube aerogels. ACS Appl. Mater. Interfaces 9, 23810–23819 (2017)CrossRef Y. Zhao, M.P. Li, S. Liu, M.F. Islam, Superelastic pseudocapacitors from freestanding MnO2-decorated graphene-coated carbon nanotube aerogels. ACS Appl. Mater. Interfaces 9, 23810–23819 (2017)CrossRef
57.
Zurück zum Zitat Y. Zheng, W. Pann, D. Zhengn, C. Sun, Fabrication of functionalized graphene-based MnO2 nanoflower through electrodeposition for high-performance supercapacitor electrodes. J. Electrochem. Soc. 163, D230–D238 (2016)CrossRef Y. Zheng, W. Pann, D. Zhengn, C. Sun, Fabrication of functionalized graphene-based MnO2 nanoflower through electrodeposition for high-performance supercapacitor electrodes. J. Electrochem. Soc. 163, D230–D238 (2016)CrossRef
58.
Zurück zum Zitat H. Zhou, H.-J. Zhai, Rapid preparation of the hybrid of MnO2 dispersed on graphene nanosheets with enhanced supercapacitive performance. Electrochim. Acta 215, 339–345 (2016)CrossRef H. Zhou, H.-J. Zhai, Rapid preparation of the hybrid of MnO2 dispersed on graphene nanosheets with enhanced supercapacitive performance. Electrochim. Acta 215, 339–345 (2016)CrossRef
59.
Zurück zum Zitat G. Zhu et al., Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 6, 1079–1085 (2014)CrossRef G. Zhu et al., Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 6, 1079–1085 (2014)CrossRef
60.
Zurück zum Zitat X. Zhu, P. Zhang, S. Xu, X. Yan, Q. Xue, Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications. ACS Appl. Mater. Interfaces 6, 11665–11674 (2014)CrossRef X. Zhu, P. Zhang, S. Xu, X. Yan, Q. Xue, Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications. ACS Appl. Mater. Interfaces 6, 11665–11674 (2014)CrossRef
61.
Zurück zum Zitat B.G.S. Raj, R.N.R. Ramprasad, A.M. Asiri, J.J. Wu, S. Anandan, Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochim. Acta 156, 127–137 (2015)CrossRef B.G.S. Raj, R.N.R. Ramprasad, A.M. Asiri, J.J. Wu, S. Anandan, Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochim. Acta 156, 127–137 (2015)CrossRef
62.
Zurück zum Zitat K. Subramani, D. Jeyakumar, M. Sathish, Manganese hexacyanoferrate derived Mn3O4 nanocubes-reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Phys. Chem. Chem. Phys. 16, 4952–4961 (2014)CrossRef K. Subramani, D. Jeyakumar, M. Sathish, Manganese hexacyanoferrate derived Mn3O4 nanocubes-reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Phys. Chem. Chem. Phys. 16, 4952–4961 (2014)CrossRef
63.
Zurück zum Zitat T. Xiong, W.S.V. Lee, X. Huang, J.M. Xue, Mn3O4/reduced graphene oxide based supercapacitor with ultra-long cycling performance. J. Mater. Chem. A 5, 12762–12768 (2017)CrossRef T. Xiong, W.S.V. Lee, X. Huang, J.M. Xue, Mn3O4/reduced graphene oxide based supercapacitor with ultra-long cycling performance. J. Mater. Chem. A 5, 12762–12768 (2017)CrossRef
64.
Zurück zum Zitat J. Chen et al., Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries. Ceram. Int. 43, 4655–4662 (2017)CrossRef J. Chen et al., Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries. Ceram. Int. 43, 4655–4662 (2017)CrossRef
65.
Zurück zum Zitat J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012)CrossRef J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012)CrossRef
66.
Zurück zum Zitat X. Zhang, X. Sun, Y. Chen, D. Zhang, Y. Ma, One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater. Lett. 68, 336–339 (2012)CrossRef X. Zhang, X. Sun, Y. Chen, D. Zhang, Y. Ma, One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater. Lett. 68, 336–339 (2012)CrossRef
67.
Zurück zum Zitat X. Zhang et al., Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to γ-MnO2 nanorods. Mater. Lett. 92, 401–404 (2013)CrossRef X. Zhang et al., Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to γ-MnO2 nanorods. Mater. Lett. 92, 401–404 (2013)CrossRef
68.
Zurück zum Zitat Z. Qi, A. Younis, D. Chu, S. Li, A facile, and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 8, 165–173 (2016)CrossRef Z. Qi, A. Younis, D. Chu, S. Li, A facile, and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 8, 165–173 (2016)CrossRef
69.
Zurück zum Zitat K. Parvez et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014)CrossRef K. Parvez et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014)CrossRef
70.
Zurück zum Zitat M. Wu, G.A. Snook, G.Z. Chen, D.J. Fray, Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem. Commun. 6, 499–504 (2004)CrossRef M. Wu, G.A. Snook, G.Z. Chen, D.J. Fray, Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem. Commun. 6, 499–504 (2004)CrossRef
71.
Zurück zum Zitat Y. Qian, S. Lu, F. Gao, Preparation of MnO2/graphene composite as electrode material for supercapacitors. J. Mater. Sci. 46, 3517–3522 (2011)CrossRef Y. Qian, S. Lu, F. Gao, Preparation of MnO2/graphene composite as electrode material for supercapacitors. J. Mater. Sci. 46, 3517–3522 (2011)CrossRef
72.
Zurück zum Zitat C.-T. Hsieh, D.-Y. Tzou, W.-Y. Lee, J.-P. Hsu, Deposition of MnO2 nanoneedles on carbon nanotubes and graphene nanosheets as electrode materials for electrochemical capacitors. J. Alloys Compd. 660, 99–107 (2016)CrossRef C.-T. Hsieh, D.-Y. Tzou, W.-Y. Lee, J.-P. Hsu, Deposition of MnO2 nanoneedles on carbon nanotubes and graphene nanosheets as electrode materials for electrochemical capacitors. J. Alloys Compd. 660, 99–107 (2016)CrossRef
73.
Zurück zum Zitat Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)CrossRef Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)CrossRef
74.
Zurück zum Zitat L. Deng et al., Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 89, 191–198 (2013)CrossRef L. Deng et al., Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 89, 191–198 (2013)CrossRef
75.
Zurück zum Zitat B. Gnana Sundara Raj, A.M. Asiri, J.J. Wu, S. Anandan, Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J. Alloys Compd. 636, 234–240 (2015)CrossRef B. Gnana Sundara Raj, A.M. Asiri, J.J. Wu, S. Anandan, Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J. Alloys Compd. 636, 234–240 (2015)CrossRef
77.
Zurück zum Zitat L.-L. Wu et al., Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. J. Alloys Compd. 728, 383–390 (2017)CrossRef L.-L. Wu et al., Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. J. Alloys Compd. 728, 383–390 (2017)CrossRef
78.
Zurück zum Zitat J.-G. Wang et al., Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 10, 6227–6234 (2016)CrossRef J.-G. Wang et al., Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 10, 6227–6234 (2016)CrossRef
79.
Zurück zum Zitat A.C. Ferrari et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRef A.C. Ferrari et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRef
80.
Zurück zum Zitat A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRef A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRef
81.
Zurück zum Zitat D. Graf et al., Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007)CrossRef D. Graf et al., Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007)CrossRef
82.
Zurück zum Zitat M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10, 751–758 (2010)CrossRef M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10, 751–758 (2010)CrossRef
83.
Zurück zum Zitat M.C. Bernard, A. Hugot-Le Goff, B.V. Thi, S.C. de Torresi, Electrochromic reactions in manganese oxides I. Raman analysis. J. Electrochem. Soc. 140, 3065–3070 (1993)CrossRef M.C. Bernard, A. Hugot-Le Goff, B.V. Thi, S.C. de Torresi, Electrochromic reactions in manganese oxides I. Raman analysis. J. Electrochem. Soc. 140, 3065–3070 (1993)CrossRef
84.
Zurück zum Zitat C. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides: part I. periodic structures. Spectrochim. Acta A 60, 689–700 (2004)CrossRef C. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides: part I. periodic structures. Spectrochim. Acta A 60, 689–700 (2004)CrossRef
85.
Zurück zum Zitat L.-X. Yang, Y.-J. Zhu, H. Tong, W.-W. Wang, G.-F. Cheng, Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study. J. Solid State Chem. 179, 1225–1229 (2006)CrossRef L.-X. Yang, Y.-J. Zhu, H. Tong, W.-W. Wang, G.-F. Cheng, Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study. J. Solid State Chem. 179, 1225–1229 (2006)CrossRef
87.
Zurück zum Zitat Y.F. Liu, G.H. Yuan, Z.H. Jiang, Z.P. Yao, Solvothermal synthesis of mn3o4nanoparticle/graphene sheet composites and their supercapacitive properties. J. Nanomater. 2014, 1–11 (2014) Y.F. Liu, G.H. Yuan, Z.H. Jiang, Z.P. Yao, Solvothermal synthesis of mn3o4nanoparticle/graphene sheet composites and their supercapacitive properties. J. Nanomater. 2014, 1–11 (2014)
89.
Zurück zum Zitat B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 55, 6812–6817 (2010)CrossRef B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 55, 6812–6817 (2010)CrossRef
90.
Zurück zum Zitat D. Wang, Y. Li, Q. Wang, T. Wang, Facile synthesis of porous Mn3O4 nanocrystal–graphene nanocomposites for electrochemical supercapacitors. Eur. J. Inorg. Chem. 2012, 628–635 (2012)CrossRef D. Wang, Y. Li, Q. Wang, T. Wang, Facile synthesis of porous Mn3O4 nano­crystal–graphene nanocomposites for electrochemical supercapacitors. Eur. J. Inorg. Chem. 2012, 628–635 (2012)CrossRef
91.
Zurück zum Zitat Y. Fan, X. Zhang, Y. Liu, Q. Cai, J. Zhang, One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors. Mater. Lett. 95, 153–156 (2013)CrossRef Y. Fan, X. Zhang, Y. Liu, Q. Cai, J. Zhang, One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors. Mater. Lett. 95, 153–156 (2013)CrossRef
92.
Zurück zum Zitat W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48, 1146–1152 (2010)CrossRef W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48, 1146–1152 (2010)CrossRef
93.
Zurück zum Zitat L. Li et al., Hydrothermal self-assembly synthesis of Mn3O4/reduced graphene oxide hydrogel and its high electrochemical performance for supercapacitors. Chin. J. Chem. 31, 1290–1298 (2013)CrossRef L. Li et al., Hydrothermal self-assembly synthesis of Mn3O4/reduced graphene oxide hydrogel and its high electrochemical performance for supercapacitors. Chin. J. Chem. 31, 1290–1298 (2013)CrossRef
94.
Zurück zum Zitat G. Jin et al., Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 178, 689–698 (2015)CrossRef G. Jin et al., Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 178, 689–698 (2015)CrossRef
95.
Zurück zum Zitat J. Xu et al., A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. J. Alloys Compd. 685, 949–956 (2016)CrossRef J. Xu et al., A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. J. Alloys Compd. 685, 949–956 (2016)CrossRef
96.
Zurück zum Zitat S. Yang, X. Song, P. Zhang, L. Gao, Crumpled nitrogen-doped graphene–ultrafine Mn3O4 nanohybrids and their application in supercapacitors. J. Mater. Chem. A 1, 14162–14169 (2013)CrossRef S. Yang, X. Song, P. Zhang, L. Gao, Crumpled nitrogen-doped graphene–ultrafine Mn3O4 nanohybrids and their application in supercapacitors. J. Mater. Chem. A 1, 14162–14169 (2013)CrossRef
Metadaten
Titel
Free-standing and binder-free electrochemical capacitor electrode based on hierarchical microfibrous carbon–graphene–Mn3O4 nanocomposites materials
verfasst von
Zineb Nabti
Tarik Bordjiba
Sujittra Poorahong
Amel Boudjemaa
Ali Benayahoum
Mohamed Siaj
Khaldoun Bachari
Publikationsdatum
16.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 17/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9618-7

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Zur Ausgabe

Neuer Inhalt