Skip to main content
Erschienen in: Colloid and Polymer Science 9/2018

25.07.2018 | Original Contribution

Synthesis and characterization of amphiphilic graft copolymers with poly(ethylene glycol) as the hydrophilic backbone and poly(butyl methacrylate) as the hydrophobic graft chain

verfasst von: Xin Liu, Xue Bai, Jian Li, Chenyi Wang, Qiang Ren

Erschienen in: Colloid and Polymer Science | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of amphiphilic graft copolymers with hydrophilic polyethylene glycol (PEG) backbone and different densities of hydrophobic poly(butyl methacrylate) (PBMA) side chains were synthesized via a strategy combining polycondensation and through activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) technology. The hydrophilic macro-ATRP initiators having different amounts of active side bromo atoms were first synthesized by reacting the small ATRP initiator which contains two hydroxyl groups with hexamethylene diisocyanate (HDI) and polyethylene glycol (PEG1000). By graft from technology, the amphiphilic graft copolymers were then synthesized via ARGET ATRP of butyl methacrylate (BMA) using the hydrophilic macro-ATRP initiators. The steric shield effects of the macro-initiator lowered the polymerization rate and final conversion of BMA. The amphiphilic graft copolymers in aqueous media had critical micelle concentration (CMC) in the range of 10−6 to 10−7 g/mL, which were determined by fluorescence method using pyrene as a probe. The aggregate sizes of the amphiphilic graft copolymers in different solvents changed greatly, which were due to different interactions between the amphiphilic graft copolymers and the solvents and the incompatibility between PEG and PBMA segments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grubbs RB, Grubbs RH (2017) 50th Anniversary perspective: living polymerization emphasizing the molecule in macromolecules. Macromolecules 50:6979–6997CrossRef Grubbs RB, Grubbs RH (2017) 50th Anniversary perspective: living polymerization emphasizing the molecule in macromolecules. Macromolecules 50:6979–6997CrossRef
2.
Zurück zum Zitat Ouchi M, Sawamoto M (2017) 50th Anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective. Macromolecules 50:2603–2614CrossRef Ouchi M, Sawamoto M (2017) 50th Anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective. Macromolecules 50:2603–2614CrossRef
3.
Zurück zum Zitat Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N (2017) 50th Anniversary perspective: polymers with complex architectures. Macromolecules 50:1253–1290CrossRef Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N (2017) 50th Anniversary perspective: polymers with complex architectures. Macromolecules 50:1253–1290CrossRef
4.
Zurück zum Zitat Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM (2016) Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis. Chem Rev 116:835–877CrossRefPubMed Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM (2016) Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis. Chem Rev 116:835–877CrossRefPubMed
5.
Zurück zum Zitat Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039CrossRef Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039CrossRef
6.
Zurück zum Zitat Ilgach DM, Meleshko TK, Yakimansky AV (2015) Methods of controlled radical polymerization for the synthesis of polymer brushes. Polym Sci Ser C 57:3–19CrossRef Ilgach DM, Meleshko TK, Yakimansky AV (2015) Methods of controlled radical polymerization for the synthesis of polymer brushes. Polym Sci Ser C 57:3–19CrossRef
7.
Zurück zum Zitat Verduzco R, Li XY, Peseka SL, Steinc GE (2015) Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev 14:2405–2420CrossRef Verduzco R, Li XY, Peseka SL, Steinc GE (2015) Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev 14:2405–2420CrossRef
8.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652CrossRef Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652CrossRef
9.
Zurück zum Zitat Ito S, Goseki R, Ishizone T, Hirao A (2014) Synthesis of well-controlled graft polymers by living anionic polymerization towards exact graft polymers. Polym Chem 5:5523–5534CrossRef Ito S, Goseki R, Ishizone T, Hirao A (2014) Synthesis of well-controlled graft polymers by living anionic polymerization towards exact graft polymers. Polym Chem 5:5523–5534CrossRef
10.
Zurück zum Zitat Wang HD, Roeder RD, Whitney RA, Champagne P, Cunningham MF (2015) Graft modification of crystalline nanocellulose by Cu(0)-mediated SET living radical polymerization. J Polym Sci, Part A: Polym Chem 53:2800–2808CrossRef Wang HD, Roeder RD, Whitney RA, Champagne P, Cunningham MF (2015) Graft modification of crystalline nanocellulose by Cu(0)-mediated SET living radical polymerization. J Polym Sci, Part A: Polym Chem 53:2800–2808CrossRef
11.
Zurück zum Zitat Wu DD, Huang YJ, Xu FG, Mai YY, Yan DY (2017) Recent advances in the solution self-assembly of amphiphilic “rod-coil” copolymers. J Polym Sci Part A Polym Chem 55:1459–1477CrossRef Wu DD, Huang YJ, Xu FG, Mai YY, Yan DY (2017) Recent advances in the solution self-assembly of amphiphilic “rod-coil” copolymers. J Polym Sci Part A Polym Chem 55:1459–1477CrossRef
12.
Zurück zum Zitat Bollhorst T, Rezwan K, Maas M (2017) Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 46:2091–2126CrossRefPubMed Bollhorst T, Rezwan K, Maas M (2017) Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 46:2091–2126CrossRefPubMed
13.
Zurück zum Zitat Galli G, Martinelli E (2017) Amphiphilic polymer platforms: surface engineering of films for marine antibiofouling. Macromol Rapid Commun 38:1600704CrossRef Galli G, Martinelli E (2017) Amphiphilic polymer platforms: surface engineering of films for marine antibiofouling. Macromol Rapid Commun 38:1600704CrossRef
14.
Zurück zum Zitat Wei J, Sun ZK, Luo W, Li YH, Elzatahry AA, Al-Enizi AM, Deng YH, Zhao DY (2017) New insight into the synthesis of large-pore ordered mesoporous materials. J Am Chem Soc 139:1706–1713CrossRefPubMed Wei J, Sun ZK, Luo W, Li YH, Elzatahry AA, Al-Enizi AM, Deng YH, Zhao DY (2017) New insight into the synthesis of large-pore ordered mesoporous materials. J Am Chem Soc 139:1706–1713CrossRefPubMed
15.
Zurück zum Zitat Bertrand O, Gohy J-F (2017) Photo-responsive polymers: synthesis and applications. Polym Chem 8:52–73CrossRef Bertrand O, Gohy J-F (2017) Photo-responsive polymers: synthesis and applications. Polym Chem 8:52–73CrossRef
16.
Zurück zum Zitat Patil Y, Almahdali S, Vu KB, Zapsas G, Hadjichristidis N, Rodionov VO (2017) pH-sensitive amphiphilic block-copolymers for transport and controlled release of oxygen. Polym Chem 8:4322–4326CrossRef Patil Y, Almahdali S, Vu KB, Zapsas G, Hadjichristidis N, Rodionov VO (2017) pH-sensitive amphiphilic block-copolymers for transport and controlled release of oxygen. Polym Chem 8:4322–4326CrossRef
17.
Zurück zum Zitat Breitenbach BB, Schmid I, Wich PR (2017) Amphiphilic polysaccharide block copolymers for pH-responsive micellar nanoparticles. Biomacromolecules 18:2839–2848CrossRefPubMed Breitenbach BB, Schmid I, Wich PR (2017) Amphiphilic polysaccharide block copolymers for pH-responsive micellar nanoparticles. Biomacromolecules 18:2839–2848CrossRefPubMed
18.
Zurück zum Zitat Pal A, Pal S (2017) Synthesis of poly(ethylene glycol)-block-poly(acrylamide)-block-poly(lactide) amphiphilic copolymer through ATRP, ROP and click chemistry: characterization, micellization and pH-triggered sustained release behaviour. Polymer 127:150–158CrossRef Pal A, Pal S (2017) Synthesis of poly(ethylene glycol)-block-poly(acrylamide)-block-poly(lactide) amphiphilic copolymer through ATRP, ROP and click chemistry: characterization, micellization and pH-triggered sustained release behaviour. Polymer 127:150–158CrossRef
19.
Zurück zum Zitat Obata M, Otobuchi R, Kuroyanagi T, Takahashi M, Hirohara S (2017) Synthesis of amphiphilic block copolymer consisting of glycopolymer and poly(L-lactide) and preparation of sugar-coated polymer aggregates. J Polym Sci A Polym Chem 55:395–403CrossRef Obata M, Otobuchi R, Kuroyanagi T, Takahashi M, Hirohara S (2017) Synthesis of amphiphilic block copolymer consisting of glycopolymer and poly(L-lactide) and preparation of sugar-coated polymer aggregates. J Polym Sci A Polym Chem 55:395–403CrossRef
20.
Zurück zum Zitat Guerre M, Schmidt J, Talmon Y, Ameduri B, Ladmiral V (2017) An amphiphilic poly(vinylidene fluoride)-b-poly(vinyl alcohol) block copolymer: synthesis and self-assembly in water. Polym Chem 8:1125–1128CrossRef Guerre M, Schmidt J, Talmon Y, Ameduri B, Ladmiral V (2017) An amphiphilic poly(vinylidene fluoride)-b-poly(vinyl alcohol) block copolymer: synthesis and self-assembly in water. Polym Chem 8:1125–1128CrossRef
21.
Zurück zum Zitat Rayeroux D, Travelet C, Lapinte V, Borsali R, Robin JJ, Bouilhac C (2017) Tunable amphiphilic graft copolymers bearing fatty chains and polyoxazoline: synthesis and self-assembly behavior in solution. Polym Chem 8:4246–4263CrossRef Rayeroux D, Travelet C, Lapinte V, Borsali R, Robin JJ, Bouilhac C (2017) Tunable amphiphilic graft copolymers bearing fatty chains and polyoxazoline: synthesis and self-assembly behavior in solution. Polym Chem 8:4246–4263CrossRef
22.
Zurück zum Zitat Qian WH, Song T, Ye M, Xu PC, Lu GL, Huang XY (2017) PAA-g-PLA amphiphilic graft copolymer: synthesis, self-assembly, and drug loading ability. Polym Chem 8:4098–4107CrossRef Qian WH, Song T, Ye M, Xu PC, Lu GL, Huang XY (2017) PAA-g-PLA amphiphilic graft copolymer: synthesis, self-assembly, and drug loading ability. Polym Chem 8:4098–4107CrossRef
23.
Zurück zum Zitat Lim JY, Kim JK, Lee JM, Ryu DY, Kim JH (2016) An amphiphilic block-graft copolymer electrolyte: synthesis, nanostructure, and use in solid-state flexible supercapacitors. J Mater Chem A 4:7848–7858CrossRef Lim JY, Kim JK, Lee JM, Ryu DY, Kim JH (2016) An amphiphilic block-graft copolymer electrolyte: synthesis, nanostructure, and use in solid-state flexible supercapacitors. J Mater Chem A 4:7848–7858CrossRef
24.
Zurück zum Zitat Lu GL, Jiang XJ, Li YJ, Lv XL, Huang XY (2015) Synthesis and self-assembly of PMBTFVB-g-PNIPAM fluorine-containing amphiphilic graft copolymer. RSC Adv 5:74947–74952CrossRef Lu GL, Jiang XJ, Li YJ, Lv XL, Huang XY (2015) Synthesis and self-assembly of PMBTFVB-g-PNIPAM fluorine-containing amphiphilic graft copolymer. RSC Adv 5:74947–74952CrossRef
25.
Zurück zum Zitat Fan XS, Wang XY, Cao MY, Wang CG, Hu ZG, Wu YL, Li ZB, Loh XJ (2017) “Y”-shape armed amphiphilic star-like copolymers: design, synthesis and dual-responsive unimolecular micelle formation for controlled drug delivery. Polym Chem 8:5611–5620CrossRef Fan XS, Wang XY, Cao MY, Wang CG, Hu ZG, Wu YL, Li ZB, Loh XJ (2017) “Y”-shape armed amphiphilic star-like copolymers: design, synthesis and dual-responsive unimolecular micelle formation for controlled drug delivery. Polym Chem 8:5611–5620CrossRef
26.
Zurück zum Zitat Cui SD, Pan XF, Gebru H, Wang X, Liu JQ, Liu JJ, Li ZJ, Guo K (2017) Amphiphilic star-shaped poly(sarcosine)-block-poly(ε-caprolactone) diblock copolymers: one-pot synthesis, characterization, and solution properties. J Mater Chem B 5:679–690CrossRef Cui SD, Pan XF, Gebru H, Wang X, Liu JQ, Liu JJ, Li ZJ, Guo K (2017) Amphiphilic star-shaped poly(sarcosine)-block-poly(ε-caprolactone) diblock copolymers: one-pot synthesis, characterization, and solution properties. J Mater Chem B 5:679–690CrossRef
27.
Zurück zum Zitat Yuan H, Chi H, Yuan WZ (2016) A star-shaped amphiphilic block copolymer with dual responses: synthesis, crystallization, self-assembly, redox and LCST-UCST thermoresponsive transition. Polym Chem 7:4901–4911CrossRef Yuan H, Chi H, Yuan WZ (2016) A star-shaped amphiphilic block copolymer with dual responses: synthesis, crystallization, self-assembly, redox and LCST-UCST thermoresponsive transition. Polym Chem 7:4901–4911CrossRef
28.
Zurück zum Zitat Guo QQ, Liu CY, Tang TT, Huang J, Zhang XG, Wang GW (2013) Synthesis of amphiphilic A4B4 star-shaped copolymers by mechanisms transformation combining with thiol-ene reaction. J Polym Sci A Polym Chem 51:4572–4583CrossRef Guo QQ, Liu CY, Tang TT, Huang J, Zhang XG, Wang GW (2013) Synthesis of amphiphilic A4B4 star-shaped copolymers by mechanisms transformation combining with thiol-ene reaction. J Polym Sci A Polym Chem 51:4572–4583CrossRef
29.
Zurück zum Zitat Gao F, Xing YH, Yao Y, Sun LY, Sun Y, He XH, Lin SL (2017) Self-assembly and multi-stimuli responsive behavior of PAA-b-PAzoMA-b-PNIPAM triblock copolymers. Polym Chem 8:7529–7536CrossRef Gao F, Xing YH, Yao Y, Sun LY, Sun Y, He XH, Lin SL (2017) Self-assembly and multi-stimuli responsive behavior of PAA-b-PAzoMA-b-PNIPAM triblock copolymers. Polym Chem 8:7529–7536CrossRef
30.
Zurück zum Zitat Hattori G, Hirai Y, Sawamoto M, Terashima T (2017) Self-assembly of PEG/dodecyl-graft amphiphilic copolymers in water: consequences of the monomer sequence and chain flexibility on uniform micelles. Polym Chem 8:7248–7259CrossRef Hattori G, Hirai Y, Sawamoto M, Terashima T (2017) Self-assembly of PEG/dodecyl-graft amphiphilic copolymers in water: consequences of the monomer sequence and chain flexibility on uniform micelles. Polym Chem 8:7248–7259CrossRef
31.
Zurück zum Zitat Shi XX, Hou ML, Bai S, Ma XQ, Gao YE, Xiao B, Xue P, Kang YJ, Xu ZG, Li CM (2017) Acid-activatable theranostic unimolecular micelles composed of amphiphilic star-like polymeric prodrug with high drug loading for enhanced cancer therapy. Mol Pharm 14:4032–4041CrossRefPubMed Shi XX, Hou ML, Bai S, Ma XQ, Gao YE, Xiao B, Xue P, Kang YJ, Xu ZG, Li CM (2017) Acid-activatable theranostic unimolecular micelles composed of amphiphilic star-like polymeric prodrug with high drug loading for enhanced cancer therapy. Mol Pharm 14:4032–4041CrossRefPubMed
32.
Zurück zum Zitat Tan HN, Yu CY, Lu ZY, Zhou YF, Yan DY (2017) A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. Soft Matter 13:6178–6188CrossRefPubMed Tan HN, Yu CY, Lu ZY, Zhou YF, Yan DY (2017) A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. Soft Matter 13:6178–6188CrossRefPubMed
33.
Zurück zum Zitat Peng D, Zhang XH, Huang XY (2006) Synthesis of amphiphilic graft copolymer with hydrophilic poly(acrylic acid) backbone and hydrophobic polystyrene side chains. Polymer 47:6072–6080CrossRef Peng D, Zhang XH, Huang XY (2006) Synthesis of amphiphilic graft copolymer with hydrophilic poly(acrylic acid) backbone and hydrophobic polystyrene side chains. Polymer 47:6072–6080CrossRef
34.
Zurück zum Zitat Peng D, Zhang XH, Feng C, Lu GL, Zhang S, Huang XY (2006) Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly(acrylic acid) backbone and hydrophobic poly(methyl methacrylate) side chains. Polymer 48:5250–5258CrossRef Peng D, Zhang XH, Feng C, Lu GL, Zhang S, Huang XY (2006) Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly(acrylic acid) backbone and hydrophobic poly(methyl methacrylate) side chains. Polymer 48:5250–5258CrossRef
35.
Zurück zum Zitat Wang W, Zhou X, Wei M, Liu ZD, Lu GL, Huang XY (2017) Synthesis of an amphiphilic graft copolymer bearing a hydrophilic poly(acrylate acid) backbone for drug delivery of methotrexate. RSC Adv 7:54562–54569CrossRef Wang W, Zhou X, Wei M, Liu ZD, Lu GL, Huang XY (2017) Synthesis of an amphiphilic graft copolymer bearing a hydrophilic poly(acrylate acid) backbone for drug delivery of methotrexate. RSC Adv 7:54562–54569CrossRef
36.
Zurück zum Zitat Manfred W, Zhao CL, Wang YC (1991) Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033–1040CrossRef Manfred W, Zhao CL, Wang YC (1991) Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033–1040CrossRef
37.
Zurück zum Zitat Irinaa A, Zhong XF, Adi E (1993) Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26:7339–7352CrossRef Irinaa A, Zhong XF, Adi E (1993) Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26:7339–7352CrossRef
38.
Zurück zum Zitat Reuther JF, Siriwardane DA, Campos R, Novak BM (2015) Solvent tunable self-assembly of amphiphilic rod-coil block copolymers with chiral, helical polycarbodiimide segments: polymeric nanostructures with variable shapes and sizes. Macromolecules 48:6890–6899CrossRef Reuther JF, Siriwardane DA, Campos R, Novak BM (2015) Solvent tunable self-assembly of amphiphilic rod-coil block copolymers with chiral, helical polycarbodiimide segments: polymeric nanostructures with variable shapes and sizes. Macromolecules 48:6890–6899CrossRef
Metadaten
Titel
Synthesis and characterization of amphiphilic graft copolymers with poly(ethylene glycol) as the hydrophilic backbone and poly(butyl methacrylate) as the hydrophobic graft chain
verfasst von
Xin Liu
Xue Bai
Jian Li
Chenyi Wang
Qiang Ren
Publikationsdatum
25.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 9/2018
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-018-4369-9

Weitere Artikel der Ausgabe 9/2018

Colloid and Polymer Science 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.