Skip to main content

2019 | OriginalPaper | Buchkapitel

Optimality and Modularity in Human Movement: From Optimal Control to Muscle Synergies

verfasst von : Bastien Berret, Ioannis Delis, Jérémie Gaveau, Frédéric Jean

Erschienen in: Biomechanics of Anthropomorphic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we review recent work related to the optimal and modular control hypotheses for human movement. Optimal control theory is often thought to imply that the brain continuously computes global optima for each motor task it faces. Modular control theory typically assumes that the brain explicitly stores genuine synergies in specific neural circuits whose combined recruitment yields task-effective motor inputs to muscles. Put this way, these two influential motor control theories are pushed to extreme positions. A more nuanced view, framed within Marr’s tri-level taxonomy of a computational theory of movement neuroscience, is discussed here. We argue that optimal control is best viewed as helping to understand “why” certain movements are preferred over others but does not say much about how the brain would practically trigger optimal strategies. We also argue that dimensionality reduction found in muscle activities may be a by-product of optimality and cannot be attributed to neurally hardwired synergies stricto sensu, in particular when the synergies are extracted from simple factorization algorithms applied to electromyographic data; their putative nature is indeed strongly dictated by the methodology itself. Hence, more modeling work is required to critically test the modularity hypothesis and assess its potential neural origins. We propose that an adequate mathematical formulation of hierarchical motor control could help to bridge the gap between optimality and modularity, thereby accounting for the most appealing aspects of the human motor controller that robotic controllers would like to mimic: rapidity, efficiency, and robustness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A useful analogy from classical mechanics is the principle of least action. For instance, trajectories of conservative systems are extrema of the Action, i.e. the time integral of the Lagrangian (kinetic minus potential energies), while it is hardly arguable that objects explicitly “optimize” their trajectories on purpose. In fact, finding whether a Lagrangian exists for a given system of differential equations has been the topic of numerous investigations in physics which date back to the works of Maupertuis, Euler or Lagrange. This refers to the inverse problem of calculus of variations [47] and can be seen as the analog problem of inverse optimal control. Notably, inverse calculus of variations has been used in the context of motor control to investigate the origin of the two-thirds power law [93].
 
2
In this chapter, the terms synergy, primitive, module or building block are loosely treated as synonyms and will be used interchangeably. In the literature, a precise mathematical definition specifying the exact nature of each term is generally lacking. Different authors may thus have their own conception regarding the meaning of each term.
 
3
In this chapter, we consider only integral costs for simplicity but we could easily add a terminal cost in all the optimal control problems.
 
4
It is generally assumed that the muscle torque \(\tau \) acting at a given joint can be split into two terms such that \(\tau =\tau _{stat}+\tau _{dyn}\), where \(\tau _{stat}\) is a static term which only depends on the system position and \(\tau _{dyn}\) is a dynamic term which depends on its velocity and acceleration [7, 72]. Gravitational torque is part of the static term which may also include other terms like elastic forces. On this basis, researchers have proposed to split EMG activity into tonic and phasic components (e.g. [52]). To clarify our purpose, let us consider a single-joint upward movement here. If the static torques were to be compensated at all times, a phasic activity of the agonist muscle should come on top of its tonic activity during the entire motion duration. On the contrary, if the agonist EMG signal is found to be below its corresponding tonic level, it may suggest that gravity is not just counteracted but utilized as a driving force. This lack of tonic activity, already observed - but not fully considered - in several studies, actually echoes the inactivation principle mentioned in the main text. If observing proper inactivation may be tricky due to multiple factors such as the noisiness of EMGs, the predicted briefness of the phenomenon and the requirement of being under well-suited conditions of speed and amplitude, this lack of compensation of gravity torques, clearly apparent in EMG data, is additional evidence for an energy-related use of gravity in fast reaching movements.
 
5
This terminology is borrowed from [88]. In [127], the terms internal and regularization are used for subjective costs while the term task-based is used for objective costs.
 
6
Remarkably, motor control has been conceived as a true (motoric) decision-making problem recently [164].
 
7
When we say that movement time is known, modeling-wise, we mean that time is set by the user (often it is taken from experimental data). Therefore, time is an input to the model. Note, however, that time can also be a free variable that emerges from optimization just as the limb’s trajectory does [138].
 
8
Vigor loosely refers to the speed, extent or frequency of movement [48]. It is often characterized by relationships between amplitude and velocity or duration.
 
9
For example, a researcher might decide to work in the space of cost functions that depend on position and speed variables, or might wish to include acceleration variables (e.g. [27]). Other assumptions could be made such as working with polynomials (e.g. [115, 139]). However, a numerical implementation would necessitate restricting to some degree n or working with a finite number of basis costs belonging to the function space under consideration.
 
10
Formally, this is the set of all the optimal trajectories joining any initial state to any terminal one.
 
11
A useful biomechanical analogy would be to talk about the “moment of a force” without precising the fixed reference point with respect to which it is calculated.
 
12
In particular, this would be compatible with the claim that muscle patterns are habitual rather than optimal [123].
 
13
The basis modules \(v_{i}(x,t)\) might be separated into spatial and temporal components \(\sigma _{i}(t)w_{i}(x)\) such as in [103] or [95], and in a way which is reminiscent of the model proposed in [43]. In this case, spatial (state-dependent) modules, or muscle synergies, would be feedback-dependent as suggested in [118]. Analogously, this time-space separation is also apparent in the optimal control of finite-horizon LQR/LQG problems.
 
14
Optimization and optimal control should not be confused although they may be related when one comes to numerical resolution of optimal control problems. The former only deals with a standard function while the latter deals with a functional, i.e. a function of a function.
 
Literatur
1.
Zurück zum Zitat Ajami, A., Gauthier, J.P., Maillot, T., Serres, U.: How humans fly. ESAIM: Control, Optimisation and Calculus of Variations 19(4), 1030–1054 (2013)MathSciNetMATHCrossRef Ajami, A., Gauthier, J.P., Maillot, T., Serres, U.: How humans fly. ESAIM: Control, Optimisation and Calculus of Variations 19(4), 1030–1054 (2013)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Ajemian, R., Hogan, N.: Experimenting with theoretical motor neuroscience, (2010) Ajemian, R., Hogan, N.: Experimenting with theoretical motor neuroscience, (2010)
3.
Zurück zum Zitat Alessandro, C., Nori, F.: Identification of synergies by optimization of trajectory tracking tasks. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, pp. 924–930 (2012) Alessandro, C., Nori, F.: Identification of synergies by optimization of trajectory tracking tasks. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, pp. 924–930 (2012)
4.
Zurück zum Zitat Alessandro, C, Carbajal, J.P., d’Avella, A.: A computational analysis of motor synergies by dynamic response decomposition. Front. Comput. Neurosci. 7 (2013a) Alessandro, C, Carbajal, J.P., d’Avella, A.: A computational analysis of motor synergies by dynamic response decomposition. Front. Comput. Neurosci. 7 (2013a)
5.
Zurück zum Zitat Alessandro, C., Delis, I., Nori, F., Panzeri, S., Berret, B.: Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives. Front. Comput. Neurosci. 7, 43 (2013b)CrossRef Alessandro, C., Delis, I., Nori, F., Panzeri, S., Berret, B.: Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives. Front. Comput. Neurosci. 7, 43 (2013b)CrossRef
6.
Zurück zum Zitat Allen, J.L., Neptune, R.R.: Three-dimensional modular control of human walking. J. Biomech. 45(12), 2157–2163 (2012)CrossRef Allen, J.L., Neptune, R.R.: Three-dimensional modular control of human walking. J. Biomech. 45(12), 2157–2163 (2012)CrossRef
7.
Zurück zum Zitat Atkeson, C.G., Hollerbach, J.M.: Kinematic features of unrestrained vertical arm movements. J. Neurosci. 5(9), 2318–2330 (1985)CrossRef Atkeson, C.G., Hollerbach, J.M.: Kinematic features of unrestrained vertical arm movements. J. Neurosci. 5(9), 2318–2330 (1985)CrossRef
8.
Zurück zum Zitat Bellman, R.E.: Dynamic Programming. Princeton, NJ (1957) Bellman, R.E.: Dynamic Programming. Princeton, NJ (1957)
9.
Zurück zum Zitat Berger, D.J., Gentner, R., Edmunds, T., Pai, D.K., d’Avella, A.: Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J. Neurosci. 33(30), 12384–12394 (2013)CrossRef Berger, D.J., Gentner, R., Edmunds, T., Pai, D.K., d’Avella, A.: Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J. Neurosci. 33(30), 12384–12394 (2013)CrossRef
10.
Zurück zum Zitat Berniker, M., Kording, K.P.: Deep networks for motor control functions. Front. Comput. Neurosci. 9 (2015) Berniker, M., Kording, K.P.: Deep networks for motor control functions. Front. Comput. Neurosci. 9 (2015)
11.
Zurück zum Zitat Berret, B., Jean, F.: Why don’t we move slower? the value of time in the neural control of action. J. Neurosci. 36(4), 1056–1070 (2016)CrossRef Berret, B., Jean, F.: Why don’t we move slower? the value of time in the neural control of action. J. Neurosci. 36(4), 1056–1070 (2016)CrossRef
12.
Zurück zum Zitat Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., Gauthier, J.P.: The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. 4(10), e100,0194 (2008a)MathSciNetCrossRef Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., Gauthier, J.P.: The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. 4(10), e100,0194 (2008a)MathSciNetCrossRef
13.
Zurück zum Zitat Berret, B., Gauthier, J.P., Papaxanthis, C.: How humans control arm movements. Proc. Steklov Inst. Mathematics 261, 44–58 (2008b)MathSciNetMATHCrossRef Berret, B., Gauthier, J.P., Papaxanthis, C.: How humans control arm movements. Proc. Steklov Inst. Mathematics 261, 44–58 (2008b)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Berret, B., Bonnetblanc, F., Papaxanthis, C., Pozzo, T.: Modular control of pointing beyond arm’s length. J. Neurosci. 29(1), 191–205 (2009)CrossRef Berret, B., Bonnetblanc, F., Papaxanthis, C., Pozzo, T.: Modular control of pointing beyond arm’s length. J. Neurosci. 29(1), 191–205 (2009)CrossRef
15.
Zurück zum Zitat Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLoS Comput. Biol. 7(10), e1002,183 (2011a)MathSciNetCrossRef Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLoS Comput. Biol. 7(10), e1002,183 (2011a)MathSciNetCrossRef
16.
Zurück zum Zitat Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Manifold reaching paradigm: how do we handle target redundancy? J. Neurophysiol. 106(4), 2086–2102 (2011b)CrossRef Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Manifold reaching paradigm: how do we handle target redundancy? J. Neurophysiol. 106(4), 2086–2102 (2011b)CrossRef
17.
Zurück zum Zitat Berret, B., Bisio, A., Jacono, M., Pozzo, T.: Reach endpoint formation during the visuomotor planning of free arm pointing. Eur. J. Neurosci. 40(10), 3491–3503 (2014)CrossRef Berret, B., Bisio, A., Jacono, M., Pozzo, T.: Reach endpoint formation during the visuomotor planning of free arm pointing. Eur. J. Neurosci. 40(10), 3491–3503 (2014)CrossRef
18.
Zurück zum Zitat Brochier, T., Spinks, R.L., Umilta, M.A., Lemon, R.N.: Patterns of muscle activity underlying object-specific grasp by the macaque monkey. J. Neurophysiol. 92(3), 1770–1782 (2004)CrossRef Brochier, T., Spinks, R.L., Umilta, M.A., Lemon, R.N.: Patterns of muscle activity underlying object-specific grasp by the macaque monkey. J. Neurophysiol. 92(3), 1770–1782 (2004)CrossRef
19.
Zurück zum Zitat Buneo, C.A., Soechting, J.F., Flanders, M.: Muscle activation patterns for reaching: the representation of distance and time. J. Neurophysiol. 71(4), 1546–1558 (1994)CrossRef Buneo, C.A., Soechting, J.F., Flanders, M.: Muscle activation patterns for reaching: the representation of distance and time. J. Neurophysiol. 71(4), 1546–1558 (1994)CrossRef
20.
Zurück zum Zitat Caggiano, V., Cheung, V.C., Bizzi, E.: An optogenetic demonstration of motor modularity in the mammalian spinal cord. Sci. Rep. 6(35), 185 (2016) Caggiano, V., Cheung, V.C., Bizzi, E.: An optogenetic demonstration of motor modularity in the mammalian spinal cord. Sci. Rep. 6(35), 185 (2016)
21.
Zurück zum Zitat Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor patterns in human walking and running. J. Neurophysiol. 95(6), 3426–37 (2006)CrossRef Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor patterns in human walking and running. J. Neurophysiol. 95(6), 3426–37 (2006)CrossRef
22.
Zurück zum Zitat Cheung, V.C., d’Avella, A., Tresch, M.C., Bizzi, E.: Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 25(27), 6419–34 (2005)CrossRef Cheung, V.C., d’Avella, A., Tresch, M.C., Bizzi, E.: Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 25(27), 6419–34 (2005)CrossRef
23.
Zurück zum Zitat Cheung, V.C., Piron, L., Agostini, M., Silvoni, S., Turolla, A., Bizzi, E.: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. U S A 106(46), 19563–19568 (2009)CrossRef Cheung, V.C., Piron, L., Agostini, M., Silvoni, S., Turolla, A., Bizzi, E.: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. U S A 106(46), 19563–19568 (2009)CrossRef
24.
Zurück zum Zitat Cheung, V.C.K., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., Paganoni, S., Bonato, P., Bizzi, E.: Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. U S A 109(36), 14652–14656 (2012)CrossRef Cheung, V.C.K., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., Paganoni, S., Bonato, P., Bizzi, E.: Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. U S A 109(36), 14652–14656 (2012)CrossRef
25.
Zurück zum Zitat Chhabra, M., Jacobs, R.A.: Properties of synergies arising from a theory of optimal motor behavior. Neural. Comput. 18(10), 2320–2342 (2006)MathSciNetCrossRef Chhabra, M., Jacobs, R.A.: Properties of synergies arising from a theory of optimal motor behavior. Neural. Comput. 18(10), 2320–2342 (2006)MathSciNetCrossRef
26.
Zurück zum Zitat Chiovetto, E., Berret, B., Delis, I., Panzeri, S., Pozzo, T.: Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies. Front. Comput. Neurosci. 7, 11 (2013)CrossRef Chiovetto, E., Berret, B., Delis, I., Panzeri, S., Pozzo, T.: Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies. Front. Comput. Neurosci. 7, 11 (2013)CrossRef
27.
Zurück zum Zitat Chittaro, F., Jean, F., Mason, P.: On the inverse optimal control problems of the human locomotion: stability and robustness of the minimizers. J. Math. Sci. 195(3), 269–287 (2013)MathSciNetMATHCrossRef Chittaro, F., Jean, F., Mason, P.: On the inverse optimal control problems of the human locomotion: stability and robustness of the minimizers. J. Math. Sci. 195(3), 269–287 (2013)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V.: Neural population dynamics during reaching. Nature 487(7405), 51–56 (2012)CrossRef Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V.: Neural population dynamics during reaching. Nature 487(7405), 51–56 (2012)CrossRef
29.
Zurück zum Zitat Chvatal, S.A., Torres-Oviedo, G., Safavynia, S.A., Ting, L.H.: Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors. J. Neurophysiol 106(2), 999–1015 (2011)CrossRef Chvatal, S.A., Torres-Oviedo, G., Safavynia, S.A., Ting, L.H.: Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors. J. Neurophysiol 106(2), 999–1015 (2011)CrossRef
30.
Zurück zum Zitat Clark, D.J., Ting, L.H., Zajac, F.E., Neptune, R.R., Kautz, S.A.: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol 103(2), 844–857 (2010)CrossRef Clark, D.J., Ting, L.H., Zajac, F.E., Neptune, R.R., Kautz, S.A.: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol 103(2), 844–857 (2010)CrossRef
31.
Zurück zum Zitat Cluff, T., Scott, S.H.: Apparent and actual trajectory control depend on the behavioral context in upper limb motor tasks. J. Neurosci. 35(36), 12465–12476 (2015)CrossRef Cluff, T., Scott, S.H.: Apparent and actual trajectory control depend on the behavioral context in upper limb motor tasks. J. Neurosci. 35(36), 12465–12476 (2015)CrossRef
32.
Zurück zum Zitat Crevecoeur, F., Thonnard, J.L., Lef èvre, P.: Optimal integration of gravity in trajectory planning of vertical pointing movements. J. Neurophysiol 102(2), 786–796 (2009)CrossRef Crevecoeur, F., Thonnard, J.L., Lef èvre, P.: Optimal integration of gravity in trajectory planning of vertical pointing movements. J. Neurophysiol 102(2), 786–796 (2009)CrossRef
33.
Zurück zum Zitat Danziger, Z., Mussa-Ivaldi, F.A.: The influence of visual motion on motor learning. J. Neurosci. 32(29), 9859–9869 (2012)CrossRef Danziger, Z., Mussa-Ivaldi, F.A.: The influence of visual motion on motor learning. J. Neurosci. 32(29), 9859–9869 (2012)CrossRef
34.
Zurück zum Zitat d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor behaviors. Proc. Natl. Acad. Sci. U S A 102(8), 3076–3081 (2005)CrossRef d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor behaviors. Proc. Natl. Acad. Sci. U S A 102(8), 3076–3081 (2005)CrossRef
35.
Zurück zum Zitat d’Avella, A., Pai, D.K.: Modularity for sensorimotor control: evidence and a new prediction. J. Motor Behaviob 42(6), 361–369 (2010)CrossRef d’Avella, A., Pai, D.K.: Modularity for sensorimotor control: evidence and a new prediction. J. Motor Behaviob 42(6), 361–369 (2010)CrossRef
36.
Zurück zum Zitat d’Avella, A., Tresch, M.C.: Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies. In: Becker, S., Ghahramani, Z. (eds.) Dietterich TG, pp. 141–148. NIPS, MIT Press (2001) d’Avella, A., Tresch, M.C.: Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies. In: Becker, S., Ghahramani, Z. (eds.) Dietterich TG, pp. 141–148. NIPS, MIT Press (2001)
37.
Zurück zum Zitat d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6(3), 300–308 (2003)CrossRef d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6(3), 300–308 (2003)CrossRef
38.
Zurück zum Zitat d’Avella, A., Portone, A., Fernandez, L., Lacquaniti, F.: Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26(30), 7791–7810 (2006)CrossRef d’Avella, A., Portone, A., Fernandez, L., Lacquaniti, F.: Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26(30), 7791–7810 (2006)CrossRef
39.
Zurück zum Zitat d’Avella, A., Fernandez, L., Portone, A., Lacquaniti, F.: Modulation of phasic and tonic muscle synergies with reaching direction and speed. J. Neurophysiol 100(3), 1433–1454 (2008)CrossRef d’Avella, A., Fernandez, L., Portone, A., Lacquaniti, F.: Modulation of phasic and tonic muscle synergies with reaching direction and speed. J. Neurophysiol 100(3), 1433–1454 (2008)CrossRef
40.
Zurück zum Zitat de Rugy, A., Loeb, G.E., Carroll, T.J.: Are muscle synergies useful for neural control? Front. Comput. Neurosci. 7, 19 (2013) de Rugy, A., Loeb, G.E., Carroll, T.J.: Are muscle synergies useful for neural control? Front. Comput. Neurosci. 7, 19 (2013)
41.
Zurück zum Zitat Delis, I., Berret, B., Pozzo, T., Panzeri, S.: A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information. Front. Comput. Neurosci. 7, 54 (2013a) Delis, I., Berret, B., Pozzo, T., Panzeri, S.: A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information. Front. Comput. Neurosci. 7, 54 (2013a)
42.
Zurück zum Zitat Delis, I., Berret, B., Pozzo, T., Panzeri, S.: Quantitative evaluation of muscle synergy models: a single-trial task decoding approach. Front Comput. Neurosci. 7, 8 (2013b) Delis, I., Berret, B., Pozzo, T., Panzeri, S.: Quantitative evaluation of muscle synergy models: a single-trial task decoding approach. Front Comput. Neurosci. 7, 8 (2013b)
43.
Zurück zum Zitat Delis, I., Panzeri, S., Pozzo, T., Berret, B.: A unifying model of concurrent spatial and temporal modularity in muscle activity. J. Neurophysiol 111(3), 675–693 (2014)CrossRef Delis, I., Panzeri, S., Pozzo, T., Berret, B.: A unifying model of concurrent spatial and temporal modularity in muscle activity. J. Neurophysiol 111(3), 675–693 (2014)CrossRef
44.
Zurück zum Zitat Delis, I., Panzeri, S., Pozzo, T., Berret, B.: Task-discriminative space-by-time factorization of muscle activity. Front Hum. Neurosci. 9, 399 (2015)CrossRef Delis, I., Panzeri, S., Pozzo, T., Berret, B.: Task-discriminative space-by-time factorization of muscle activity. Front Hum. Neurosci. 9, 399 (2015)CrossRef
45.
Zurück zum Zitat Diedrichsen, J., Shadmehr, R., Ivry, R.B.: The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. (2009) Diedrichsen, J., Shadmehr, R., Ivry, R.B.: The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. (2009)
46.
Zurück zum Zitat Dominici, N., Ivanenko, Y.P., Cappellini, G., d’Avella, A., Mondí, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo, A., Giannini, C., Poppele, R.E., Lacquaniti, F.: Locomotor primitives in newborn babies and their development. Science 334(6058), 997–999 (2011)CrossRef Dominici, N., Ivanenko, Y.P., Cappellini, G., d’Avella, A., Mondí, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo, A., Giannini, C., Poppele, R.E., Lacquaniti, F.: Locomotor primitives in newborn babies and their development. Science 334(6058), 997–999 (2011)CrossRef
47.
48.
Zurück zum Zitat Dudman, J.T., Krakauer, J.W.: The basal ganglia: from motor commands to the control of vigor. Curr. Opin. Neurobiol. 37, 158–166 (2016)CrossRef Dudman, J.T., Krakauer, J.W.: The basal ganglia: from motor commands to the control of vigor. Curr. Opin. Neurobiol. 37, 158–166 (2016)CrossRef
50.
Zurück zum Zitat Farshchiansadegh, A., Melendez-Calderon, A., Ranganathan, R., Murphey, T.D., Mussa-Ivaldi, F.A.: Sensory agreement guides kinetic energy optimization of arm movements during object manipulation. PLoS Comput. Biol. 12(4), e1004,861 (2016)CrossRef Farshchiansadegh, A., Melendez-Calderon, A., Ranganathan, R., Murphey, T.D., Mussa-Ivaldi, F.A.: Sensory agreement guides kinetic energy optimization of arm movements during object manipulation. PLoS Comput. Biol. 12(4), e1004,861 (2016)CrossRef
51.
Zurück zum Zitat Ferrante, A., Marro, G., Ntogramatzidis, L.: A parametrization of the solutions of the finite-horizon lq problem with general cost and boundary conditions. Automatica 41, 1359–1366 (2005)MathSciNetMATHCrossRef Ferrante, A., Marro, G., Ntogramatzidis, L.: A parametrization of the solutions of the finite-horizon lq problem with general cost and boundary conditions. Automatica 41, 1359–1366 (2005)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Flanders, M., Pellegrini, J.J., Geisler, S.D.: Basic features of phasic activation for reaching in vertical planes. Exp. Brain Res. 110(1), 67–79 (1996)CrossRef Flanders, M., Pellegrini, J.J., Geisler, S.D.: Basic features of phasic activation for reaching in vertical planes. Exp. Brain Res. 110(1), 67–79 (1996)CrossRef
53.
Zurück zum Zitat Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)CrossRef Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)CrossRef
54.
Zurück zum Zitat Friston, K.: What is optimal about motor control? Neuron 72, 488–498 (2011)CrossRef Friston, K.: What is optimal about motor control? Neuron 72, 488–498 (2011)CrossRef
55.
Zurück zum Zitat Ganesh, G., Haruno, M., Kawato, M., Burdet, E.: Motor memory and local minimization of error and effort, not global optimization, determine motor behavior. J. Neurophysiol 104(1), 382–390 (2010)CrossRef Ganesh, G., Haruno, M., Kawato, M., Burdet, E.: Motor memory and local minimization of error and effort, not global optimization, determine motor behavior. J. Neurophysiol 104(1), 382–390 (2010)CrossRef
56.
Zurück zum Zitat Gao, P., Ganguli, S.: On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol 32, 148–155 (2015)CrossRef Gao, P., Ganguli, S.: On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol 32, 148–155 (2015)CrossRef
57.
Zurück zum Zitat Gauthier, J.P., Berret, B., Jean, F.: A biomechanical inactivation principle. Proc. Steklov Inst. Mathematics 268, 93–116 (2010)MathSciNetMATHCrossRef Gauthier, J.P., Berret, B., Jean, F.: A biomechanical inactivation principle. Proc. Steklov Inst. Mathematics 268, 93–116 (2010)MathSciNetMATHCrossRef
58.
Zurück zum Zitat Gaveau, J., Papaxanthis, C.: The temporal structure of vertical arm movements. PLoS One 6(7), e22,045 (2011)CrossRef Gaveau, J., Papaxanthis, C.: The temporal structure of vertical arm movements. PLoS One 6(7), e22,045 (2011)CrossRef
59.
Zurück zum Zitat Gaveau, J., Paizis, C, Berret, B., Pozzo, T., Papaxanthis, C.: Sensorimotor adaptation of point-to-point arm movements after space-flight: the role of the internal representation of gravity force in trajectory planning. J. Neurophysiol (2011) Gaveau, J., Paizis, C, Berret, B., Pozzo, T., Papaxanthis, C.: Sensorimotor adaptation of point-to-point arm movements after space-flight: the role of the internal representation of gravity force in trajectory planning. J. Neurophysiol (2011)
60.
Zurück zum Zitat Gaveau, J., Berret, B., Demougeot, L., Fadiga, L., Pozzo, T., Papaxanthis, C.: Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations. J. Neurophysiol 111(1), 4–16 (2014)CrossRef Gaveau, J., Berret, B., Demougeot, L., Fadiga, L., Pozzo, T., Papaxanthis, C.: Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations. J. Neurophysiol 111(1), 4–16 (2014)CrossRef
61.
Zurück zum Zitat Gaveau, J., Berret, B., Angelaki, D.E., Papaxanthis, C.: Direction-dependent arm kinematics reveal optimal integration of gravity cues. eLife 5, 16,394 (2016)CrossRef Gaveau, J., Berret, B., Angelaki, D.E., Papaxanthis, C.: Direction-dependent arm kinematics reveal optimal integration of gravity cues. eLife 5, 16,394 (2016)CrossRef
62.
Zurück zum Zitat Geisert M, Del Prete A, Mansard N, Romano F, Nori F (2017) Regularized hierarchical differential dynamic programming. IEEE Trans Rob Geisert M, Del Prete A, Mansard N, Romano F, Nori F (2017) Regularized hierarchical differential dynamic programming. IEEE Trans Rob
63.
Zurück zum Zitat Gentili, R., Cahouet, V., Papaxanthis, C.: Motor planning of arm movements is direction-dependent in the gravity field. Neuroscience 145(1), 20–32 (2007)CrossRef Gentili, R., Cahouet, V., Papaxanthis, C.: Motor planning of arm movements is direction-dependent in the gravity field. Neuroscience 145(1), 20–32 (2007)CrossRef
64.
Zurück zum Zitat Giszter, S.F., Hart, C.B.: Motor primitives and synergies in the spinal cord and after injury- the current state of play. Ann. N.Y. Acad. Sci. 1279(1), 114–126 (2013)CrossRef Giszter, S.F., Hart, C.B.: Motor primitives and synergies in the spinal cord and after injury- the current state of play. Ann. N.Y. Acad. Sci. 1279(1), 114–126 (2013)CrossRef
65.
Zurück zum Zitat Gizzi, L., Nielsen, J.F., Felici, F., Ivanenko, Y.P., Farina, D.: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J. Neurophysiol 106(1), 202–10 (2011)CrossRef Gizzi, L., Nielsen, J.F., Felici, F., Ivanenko, Y.P., Farina, D.: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J. Neurophysiol 106(1), 202–10 (2011)CrossRef
66.
Zurück zum Zitat Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394(6695), 780–784 (1998)CrossRef Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394(6695), 780–784 (1998)CrossRef
67.
Zurück zum Zitat Hart, C.B., Giszter, S.F.: Modular premotor drives and unit bursts as primitives for frog motor behaviors. J. Neurosci. 24(22), 5269–5282 (2004)CrossRef Hart, C.B., Giszter, S.F.: Modular premotor drives and unit bursts as primitives for frog motor behaviors. J. Neurosci. 24(22), 5269–5282 (2004)CrossRef
68.
Zurück zum Zitat Hart, C.B., Giszter, S.F.: A neural basis for motor primitives in the spinal cord. J. Neurosci. 30(4), 1322–1336 (2010)CrossRef Hart, C.B., Giszter, S.F.: A neural basis for motor primitives in the spinal cord. J. Neurosci. 30(4), 1322–1336 (2010)CrossRef
69.
Zurück zum Zitat Hilt, P.M., Berret, B., Papaxanthis, C., Stapley, P.J., Pozzo, T.: Evidence for subjective values guiding posture and movement coordination in a free-endpoint whole-body reaching task. Sci. Rep. 6(23), 868 (2016) Hilt, P.M., Berret, B., Papaxanthis, C., Stapley, P.J., Pozzo, T.: Evidence for subjective values guiding posture and movement coordination in a free-endpoint whole-body reaching task. Sci. Rep. 6(23), 868 (2016)
70.
Zurück zum Zitat Hirashima, M., Oya, T.: How does the brain solve muscle redundancy? filling the gap between optimization and muscle synergy hypotheses. Neurosci. Res. 104, 80–87 (2016)CrossRef Hirashima, M., Oya, T.: How does the brain solve muscle redundancy? filling the gap between optimization and muscle synergy hypotheses. Neurosci. Res. 104, 80–87 (2016)CrossRef
71.
Zurück zum Zitat Holdefer, R.N., Miller, L.E.: Primary motor cortical neurons encode functional muscle synergies. Exp. Brain Res. 146(2), 233–43 (2002)CrossRef Holdefer, R.N., Miller, L.E.: Primary motor cortical neurons encode functional muscle synergies. Exp. Brain Res. 146(2), 233–43 (2002)CrossRef
72.
Zurück zum Zitat Hollerbach, J.M., Flash, T.: Dynamic interactions between limb segments during planar arm movement. Biol. Cybern. 44(1), 67–77 (1982)CrossRef Hollerbach, J.M., Flash, T.: Dynamic interactions between limb segments during planar arm movement. Biol. Cybern. 44(1), 67–77 (1982)CrossRef
73.
Zurück zum Zitat Hondzinski, J.M., Soebbing, C.M., French, A.E., Winges, S.A.: Different damping responses explain vertical endpoint error differences between visual conditions. Exp. Brain Res. 234(6), 1575–1587 (2016)CrossRef Hondzinski, J.M., Soebbing, C.M., French, A.E., Winges, S.A.: Different damping responses explain vertical endpoint error differences between visual conditions. Exp. Brain Res. 234(6), 1575–1587 (2016)CrossRef
74.
Zurück zum Zitat Hug, F., Turpin, N.A., Guével, A., Dorel, S.: Is interindividual variability of emg patterns in trained cyclists related to different muscle synergies? J. Appl. Physiol. 108(6), 1727–1736 (2010)CrossRef Hug, F., Turpin, N.A., Guével, A., Dorel, S.: Is interindividual variability of emg patterns in trained cyclists related to different muscle synergies? J. Appl. Physiol. 108(6), 1727–1736 (2010)CrossRef
75.
Zurück zum Zitat Hug, F., Turpin, N.A., Couturier, A., Dorel, S.: Consistency of muscle synergies during pedaling across different mechanical constraints. J. Neurophysiol 106(1), 91–103 (2011)CrossRef Hug, F., Turpin, N.A., Couturier, A., Dorel, S.: Consistency of muscle synergies during pedaling across different mechanical constraints. J. Neurophysiol 106(1), 91–103 (2011)CrossRef
76.
Zurück zum Zitat Huh, D., Sejnowski, T.J.: Conservation law for self-paced movements. Proc. Natl. Acad. Sci. U S A 113(31), 8831–8836 (2016)CrossRef Huh, D., Sejnowski, T.J.: Conservation law for self-paced movements. Proc. Natl. Acad. Sci. U S A 113(31), 8831–8836 (2016)CrossRef
77.
Zurück zum Zitat Inouye, J.M., Valero-Cuevas, F.J.: Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput. Biol. 12(2), e1004,737 (2016)CrossRef Inouye, J.M., Valero-Cuevas, F.J.: Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput. Biol. 12(2), e1004,737 (2016)CrossRef
78.
Zurück zum Zitat Ivanenko, Y.P., Grasso, R., Zago, M., Molinari, M., Scivoletto, G., Castellano, V., Macellari, V., Lacquaniti, F.: Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J. Neurophysiol 90(5), 3555–65 (2003)CrossRef Ivanenko, Y.P., Grasso, R., Zago, M., Molinari, M., Scivoletto, G., Castellano, V., Macellari, V., Lacquaniti, F.: Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J. Neurophysiol 90(5), 3555–65 (2003)CrossRef
79.
Zurück zum Zitat Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556(Pt 1), 267–282 (2004)CrossRef Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556(Pt 1), 267–282 (2004)CrossRef
80.
Zurück zum Zitat Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., Lacquaniti, F.: Coordination of locomotion with voluntary movements in humans. J. Neurosci. 25(31), 7238–7253 (2005)CrossRef Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., Lacquaniti, F.: Coordination of locomotion with voluntary movements in humans. J. Neurosci. 25(31), 7238–7253 (2005)CrossRef
81.
Zurück zum Zitat Izawa, J., Rane, T., Donchin, O., Shadmehr, R.: Motor adaptation as a process of reoptimization. J. Neurosci. 28(11), 2883–2891 (2008)CrossRef Izawa, J., Rane, T., Donchin, O., Shadmehr, R.: Motor adaptation as a process of reoptimization. J. Neurosci. 28(11), 2883–2891 (2008)CrossRef
82.
Zurück zum Zitat Jean, F., Berret, B.: On the Duration of Human Movement: From Self-paced to Slow/Fast Reaches up to Fitts’s Law, pp. 43–65. Springer International Publishing, Cham (2017) Jean, F., Berret, B.: On the Duration of Human Movement: From Self-paced to Slow/Fast Reaches up to Fitts’s Law, pp. 43–65. Springer International Publishing, Cham (2017)
83.
Zurück zum Zitat Kalman, R.: When is a linear control system optimal? ASME Transactions. J. Basic Eng. 86, 51–60 (1964)CrossRef Kalman, R.: When is a linear control system optimal? ASME Transactions. J. Basic Eng. 86, 51–60 (1964)CrossRef
84.
Zurück zum Zitat Kappen, H.J.: Optimal control theory and the linear bellman equation. In: Barber, D., Cemgil, A.T., Chiappa, S. (eds.), Bayesian Time Series Models, Cambridge University Press, pp. 363–387, Cambridge Books Online (2011) Kappen, H.J.: Optimal control theory and the linear bellman equation. In: Barber, D., Cemgil, A.T., Chiappa, S. (eds.), Bayesian Time Series Models, Cambridge University Press, pp. 363–387, Cambridge Books Online (2011)
85.
Zurück zum Zitat Kargo, W.J., Giszter, S.F.: Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal cord. J. Neurosci. 28(10), 2409–25 (2008)CrossRef Kargo, W.J., Giszter, S.F.: Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal cord. J. Neurosci. 28(10), 2409–25 (2008)CrossRef
86.
Zurück zum Zitat Kargo, W.J., Nitz, D.A.: Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J. Neurosci. 23(35), 11255–11269 (2003)CrossRef Kargo, W.J., Nitz, D.A.: Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J. Neurosci. 23(35), 11255–11269 (2003)CrossRef
87.
Zurück zum Zitat Kelso, J.S.: Dynamic patterns: the self-organization of brain and behavior. MIT press, Cambridge (1997) Kelso, J.S.: Dynamic patterns: the self-organization of brain and behavior. MIT press, Cambridge (1997)
88.
Zurück zum Zitat Knill, D.C., Bondada, A., Chhabra, M.: Flexible, task-dependent use of sensory feedback to control hand movements. J. Neurosci. 31(4), 1219–1237 (2011)CrossRef Knill, D.C., Bondada, A., Chhabra, M.: Flexible, task-dependent use of sensory feedback to control hand movements. J. Neurosci. 31(4), 1219–1237 (2011)CrossRef
89.
Zurück zum Zitat Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., MacIver, M.A., Poeppel, D.: Neuroscience needs behavior: correcting a reductionist bias. Neuron 93(3), 480–490 (2017)CrossRef Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., MacIver, M.A., Poeppel, D.: Neuroscience needs behavior: correcting a reductionist bias. Neuron 93(3), 480–490 (2017)CrossRef
90.
Zurück zum Zitat Kutch, J.J., Valero-Cuevas, F.J.: Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002,434 (2012)CrossRef Kutch, J.J., Valero-Cuevas, F.J.: Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002,434 (2012)CrossRef
91.
Zurück zum Zitat Lacquaniti, F., Ivanenko, Y.P., Zago, M.: Patterned control of human locomotion. J. Physiol. 590(Pt 10), 2189–2199 (2012)CrossRef Lacquaniti, F., Ivanenko, Y.P., Zago, M.: Patterned control of human locomotion. J. Physiol. 590(Pt 10), 2189–2199 (2012)CrossRef
92.
Zurück zum Zitat Le Seac’h, A.B., McIntyre, J.: Multimodal reference frame for the planning of vertical arms movements. Neurosci. Lett. 423(3), 211–215 (2007)CrossRef Le Seac’h, A.B., McIntyre, J.: Multimodal reference frame for the planning of vertical arms movements. Neurosci. Lett. 423(3), 211–215 (2007)CrossRef
93.
Zurück zum Zitat Lebedev, S., Tsui, W.H., Van Gelder, P.: Drawing movements as an outcome of the principle of least action. J. Math. Psychol. 45(1), 43–52 (2001)MathSciNetMATHCrossRef Lebedev, S., Tsui, W.H., Van Gelder, P.: Drawing movements as an outcome of the principle of least action. J. Math. Psychol. 45(1), 43–52 (2001)MathSciNetMATHCrossRef
94.
Zurück zum Zitat Li, W., Todorov, E.: Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system. Int. J. Control. 80(9), 1439–1453 (2007)MathSciNetMATHCrossRef Li, W., Todorov, E.: Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system. Int. J. Control. 80(9), 1439–1453 (2007)MathSciNetMATHCrossRef
95.
Zurück zum Zitat Loeb, E., Giszter, S., Bizzi, P.S.E., Mussa-Ivaldi, F.: Output units of motor behavior: an experimental and modeling study. J. Cognit. Neurosci. 12(1), 78–97 (2000)CrossRef Loeb, E., Giszter, S., Bizzi, P.S.E., Mussa-Ivaldi, F.: Output units of motor behavior: an experimental and modeling study. J. Cognit. Neurosci. 12(1), 78–97 (2000)CrossRef
96.
Zurück zum Zitat Loeb, G.E.: Optimal isn’t good enough. Biol. Cybern. 106(11–12), 757–765 (2012)CrossRef Loeb, G.E.: Optimal isn’t good enough. Biol. Cybern. 106(11–12), 757–765 (2012)CrossRef
97.
Zurück zum Zitat Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt & Company, New York (1983) Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt & Company, New York (1983)
98.
Zurück zum Zitat McKay, J.L., Ting, L.H.: Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts. PLoS Comput Biol 8(4), e1002,465 (2012)CrossRef McKay, J.L., Ting, L.H.: Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts. PLoS Comput Biol 8(4), e1002,465 (2012)CrossRef
99.
Zurück zum Zitat Mehrabi, N., Razavian, R.S., Ghannadi, B., McPhee, J.: Predictive simulation of reaching moving targets using nonlinear model predictive control. Front. Comput. Neurosci. 10 (2016) Mehrabi, N., Razavian, R.S., Ghannadi, B., McPhee, J.: Predictive simulation of reaching moving targets using nonlinear model predictive control. Front. Comput. Neurosci. 10 (2016)
100.
Zurück zum Zitat Mistry, M., Theodorou, E., Schaal, S., Kawato, M.: Optimal control of reaching includes kinematic constraints. J. Neurophysiol. 110(1), 1–11 (2013)CrossRef Mistry, M., Theodorou, E., Schaal, S., Kawato, M.: Optimal control of reaching includes kinematic constraints. J. Neurophysiol. 110(1), 1–11 (2013)CrossRef
101.
Zurück zum Zitat Mohan, V., Morasso, P.: Passive motion paradigm: an alternative to optimal control. Front Neurorob. 5, 4 (2011)CrossRef Mohan, V., Morasso, P.: Passive motion paradigm: an alternative to optimal control. Front Neurorob. 5, 4 (2011)CrossRef
102.
Zurück zum Zitat Muceli, S., Boye, A.T., d’Avella, A., Farina, D.: Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J. Neurophysiol 103(3), 1532–42 (2010)CrossRef Muceli, S., Boye, A.T., d’Avella, A., Farina, D.: Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J. Neurophysiol 103(3), 1532–42 (2010)CrossRef
103.
Zurück zum Zitat Mussa-Ivaldi, F.A.: Nonlinear force fields: a distributed system of control primitives for representing and learning movements. In: Proceedings., 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997. CIRA’97., IEEE, pp. 84–90 (1997) Mussa-Ivaldi, F.A.: Nonlinear force fields: a distributed system of control primitives for representing and learning movements. In: Proceedings., 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997. CIRA’97., IEEE, pp. 84–90 (1997)
104.
Zurück zum Zitat Mussa-Ivaldi, F.A., Giszter, S.F., Bizzi, E.: Linear combinations of primitives in vertebrate motor control. Proc. Natl. Acad. Sci. U S A 91(16), 7534–7538 (1994)CrossRef Mussa-Ivaldi, F.A., Giszter, S.F., Bizzi, E.: Linear combinations of primitives in vertebrate motor control. Proc. Natl. Acad. Sci. U S A 91(16), 7534–7538 (1994)CrossRef
105.
Zurück zum Zitat Nashed, J.Y., Crevecoeur, F., Scott, S.H.: Influence of the behavioral goal and environmental obstacles on rapid feedback responses. J. Neurophysiol 108(4), 999–1009 (2012)CrossRef Nashed, J.Y., Crevecoeur, F., Scott, S.H.: Influence of the behavioral goal and environmental obstacles on rapid feedback responses. J. Neurophysiol 108(4), 999–1009 (2012)CrossRef
106.
Zurück zum Zitat Nelson, W.L.: Physical principles for economies of skilled movements. Biol. Cybern. 46(2), 135–147 (1983)MATHCrossRef Nelson, W.L.: Physical principles for economies of skilled movements. Biol. Cybern. 46(2), 135–147 (1983)MATHCrossRef
107.
Zurück zum Zitat Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: a simulation study. J. Biomech. 42(9), 1282–7 (2009)CrossRef Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: a simulation study. J. Biomech. 42(9), 1282–7 (2009)CrossRef
108.
Zurück zum Zitat Nori, F., Frezza, R.: Linear optimal control problems and quadratic cost functions estimation. In: 12th Mediterranean Conference on Control and Automation, MED’04. Kusadasi, Aydin, Turkey (2004) Nori, F., Frezza, R.: Linear optimal control problems and quadratic cost functions estimation. In: 12th Mediterranean Conference on Control and Automation, MED’04. Kusadasi, Aydin, Turkey (2004)
109.
Zurück zum Zitat Nori, F., Frezza, R.: A control theory approach to the analysis and synthesis of the experimentally observed motion primitives. Biol. Cybern. 93(5), 323–342 (2005)MathSciNetMATHCrossRef Nori, F., Frezza, R.: A control theory approach to the analysis and synthesis of the experimentally observed motion primitives. Biol. Cybern. 93(5), 323–342 (2005)MathSciNetMATHCrossRef
110.
Zurück zum Zitat Overduin, S.A., d’Avella, A., Roh, J., Bizzi, E.: Modulation of muscle synergy recruitment in primate grasping. J. Neurosci. 28(4), 880–92 (2008)CrossRef Overduin, S.A., d’Avella, A., Roh, J., Bizzi, E.: Modulation of muscle synergy recruitment in primate grasping. J. Neurosci. 28(4), 880–92 (2008)CrossRef
111.
Zurück zum Zitat Overduin, S.A., d’Avella, A., Carmena, J.M., Bizzi, E.: Microstimulation activates a handful of muscle synergies. Neuron. 76(6), 1071–1077 (2012)CrossRef Overduin, S.A., d’Avella, A., Carmena, J.M., Bizzi, E.: Microstimulation activates a handful of muscle synergies. Neuron. 76(6), 1071–1077 (2012)CrossRef
112.
Zurück zum Zitat Overduin, S.A., d’Avella, A., Roh, J., Carmena, J.M., Bizzi, E.: Representation of muscle synergies in the primate brain. J. Neurosci. 35(37), 12615–12624 (2015)CrossRef Overduin, S.A., d’Avella, A., Roh, J., Carmena, J.M., Bizzi, E.: Representation of muscle synergies in the primate brain. J. Neurosci. 35(37), 12615–12624 (2015)CrossRef
113.
Zurück zum Zitat Papaxanthis, C., Pozzo, T., Schieppati, M.: Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed. Exp. Brain Res. 148(4), 498–503 (2003)CrossRef Papaxanthis, C., Pozzo, T., Schieppati, M.: Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed. Exp. Brain Res. 148(4), 498–503 (2003)CrossRef
114.
Zurück zum Zitat Papaxanthis, C., Pozzo, T., McIntyre, J.: Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience 135(2), 371–383 (2005)CrossRef Papaxanthis, C., Pozzo, T., McIntyre, J.: Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience 135(2), 371–383 (2005)CrossRef
115.
Zurück zum Zitat Pauwels, E., Henrion, D., Lasserre, J.B.: Inverse optimal control with polynomial optimization. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), IEEE, pp. 5581–5586 (2014) Pauwels, E., Henrion, D., Lasserre, J.B.: Inverse optimal control with polynomial optimization. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), IEEE, pp. 5581–5586 (2014)
116.
Zurück zum Zitat Perreault, E.J., Chen, K., Trumbower, R.D., Lewis, G.: Interactions with compliant loads alter stretch reflex gains but not intermuscular coordination. J. Neurophysiol 99(5), 2101–2113 (2008)CrossRef Perreault, E.J., Chen, K., Trumbower, R.D., Lewis, G.: Interactions with compliant loads alter stretch reflex gains but not intermuscular coordination. J. Neurophysiol 99(5), 2101–2113 (2008)CrossRef
117.
Zurück zum Zitat Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Pergamon Press, Oxford (1964) Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Pergamon Press, Oxford (1964)
118.
Zurück zum Zitat Razavian, R.S., Mehrabi, N., McPhee, J.: A model-based approach to predict muscle synergies using optimization: application to feedback control. Front Comput. Neurosci. 9 (2015) Razavian, R.S., Mehrabi, N., McPhee, J.: A model-based approach to predict muscle synergies using optimization: application to feedback control. Front Comput. Neurosci. 9 (2015)
119.
Zurück zum Zitat Roh, J., Cheung, V.C.K., Bizzi, E.: Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol 106(3), 1363–1378 (2011)CrossRef Roh, J., Cheung, V.C.K., Bizzi, E.: Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol 106(3), 1363–1378 (2011)CrossRef
120.
Zurück zum Zitat Roh, J., Rymer, W.Z., Perreault, E.J., Yoo, S.B., Beer, R.F.: Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol 109(3), 768–781 (2013)CrossRef Roh, J., Rymer, W.Z., Perreault, E.J., Yoo, S.B., Beer, R.F.: Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol 109(3), 768–781 (2013)CrossRef
121.
Zurück zum Zitat Roh, J., Rymer, W.Z., Beer, R.F.: Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum. Neurosci. 9, 6 (2015)CrossRef Roh, J., Rymer, W.Z., Beer, R.F.: Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum. Neurosci. 9, 6 (2015)CrossRef
122.
Zurück zum Zitat Romano, F., Del Prete, A., Mansard, N., Nori, F.: Prioritized optimal control: A hierarchical differential dynamic programming approach. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 3590–3595 (2015) Romano, F., Del Prete, A., Mansard, N., Nori, F.: Prioritized optimal control: A hierarchical differential dynamic programming approach. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 3590–3595 (2015)
123.
Zurück zum Zitat de Rugy, A., Loeb, G.E., Carroll, T.J.: Muscle coordination is habitual rather than optimal. J. Neurosci. 32(21), 7384–7391 (2012)CrossRef de Rugy, A., Loeb, G.E., Carroll, T.J.: Muscle coordination is habitual rather than optimal. J. Neurosci. 32(21), 7384–7391 (2012)CrossRef
124.
Zurück zum Zitat Russo, M., D’Andola, M., Portone, A., Lacquaniti, F., d’Avella, A.: Dimensionality of joint torques and muscle patterns for reaching. Front Comput. Neurosci. 8, 24 (2014)CrossRef Russo, M., D’Andola, M., Portone, A., Lacquaniti, F., d’Avella, A.: Dimensionality of joint torques and muscle patterns for reaching. Front Comput. Neurosci. 8, 24 (2014)CrossRef
125.
Zurück zum Zitat Saltiel, P., Wyler-Duda, K., D’Avella, A., Tresch, M.C., Bizzi, E.: Muscle synergies encoded within the spinal cord: evidence from focal intraspinal nmda iontophoresis in the frog. J. Neurophysiol 85(2), 605–19 (2001)CrossRef Saltiel, P., Wyler-Duda, K., D’Avella, A., Tresch, M.C., Bizzi, E.: Muscle synergies encoded within the spinal cord: evidence from focal intraspinal nmda iontophoresis in the frog. J. Neurophysiol 85(2), 605–19 (2001)CrossRef
126.
Zurück zum Zitat Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)CrossRef Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)CrossRef
127.
Zurück zum Zitat Schwartz, A.B.: Movement: how the brain communicates with the world. Cell 164(6), 1122–1135 (2016)CrossRef Schwartz, A.B.: Movement: how the brain communicates with the world. Cell 164(6), 1122–1135 (2016)CrossRef
128.
Zurück zum Zitat Sciutti, A., Demougeot, L., Berret, B., Toma, S., Sandini, G., Papaxanthis, C., Pozzo, T.: Visual gravity influences arm movement planning. J. Neurophysiol 107(12), 3433–3445 (2012)CrossRef Sciutti, A., Demougeot, L., Berret, B., Toma, S., Sandini, G., Papaxanthis, C., Pozzo, T.: Visual gravity influences arm movement planning. J. Neurophysiol 107(12), 3433–3445 (2012)CrossRef
129.
Zurück zum Zitat Scott, S.H.: Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5(7), 532–546 (2004)CrossRef Scott, S.H.: Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5(7), 532–546 (2004)CrossRef
130.
Zurück zum Zitat Scott, S.H.: The computational and neural basis of voluntary motor control and planning. Trends Cognitive Sci. 16(11), 541–549 (2012)CrossRef Scott, S.H.: The computational and neural basis of voluntary motor control and planning. Trends Cognitive Sci. 16(11), 541–549 (2012)CrossRef
131.
Zurück zum Zitat Selinger, J.C., O’Connor, S.M., Wong, J.D., Donelan, J.M.: Humans can continuously optimize energetic cost during walking. Curr. Biol. 25(18), 2452–2456 (2015)CrossRef Selinger, J.C., O’Connor, S.M., Wong, J.D., Donelan, J.M.: Humans can continuously optimize energetic cost during walking. Curr. Biol. 25(18), 2452–2456 (2015)CrossRef
132.
Zurück zum Zitat Shadmehr, R.: Control of movements and temporal discounting of reward. Curr. Opin. Neurobiol. 20(6), 726–730 (2010)CrossRef Shadmehr, R.: Control of movements and temporal discounting of reward. Curr. Opin. Neurobiol. 20(6), 726–730 (2010)CrossRef
133.
Zurück zum Zitat Shadmehr, R., Krakauer, J.W.: A computational neuroanatomy for motor control. Exp. Brain. Res. 185(3), 359–381 (2008)CrossRef Shadmehr, R., Krakauer, J.W.: A computational neuroanatomy for motor control. Exp. Brain. Res. 185(3), 359–381 (2008)CrossRef
134.
Zurück zum Zitat Shadmehr, R., Huang, H.J., Ahmed, A.A.: A representation of effort in decision-making and motor control. Curr. Biol. 26(14), 1929–1934 (2016)CrossRef Shadmehr, R., Huang, H.J., Ahmed, A.A.: A representation of effort in decision-making and motor control. Curr. Biol. 26(14), 1929–1934 (2016)CrossRef
135.
Zurück zum Zitat Sponberg, S., Daniel, T.L., Fairhall, A.L.: Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control. PLoS Comput. Biol. 11(e1004), 168 (2015) Sponberg, S., Daniel, T.L., Fairhall, A.L.: Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control. PLoS Comput. Biol. 11(e1004), 168 (2015)
136.
Zurück zum Zitat Steele, K.M., Tresch, M.C., Perreault, E.J.: The number and choice of muscles impact the results of muscle synergy analyses. Front Comput. Neurosci. 7 (2013) Steele, K.M., Tresch, M.C., Perreault, E.J.: The number and choice of muscles impact the results of muscle synergy analyses. Front Comput. Neurosci. 7 (2013)
137.
Zurück zum Zitat Taïx, M., Tran, M.T., Souères, P., Guigon, E.: Generating human-like reaching movements with a humanoid robot: a computational approach. J. Comput. Sci. 4(4), 269–284 (2013)CrossRef Taïx, M., Tran, M.T., Souères, P., Guigon, E.: Generating human-like reaching movements with a humanoid robot: a computational approach. J. Comput. Sci. 4(4), 269–284 (2013)CrossRef
138.
Zurück zum Zitat Tanaka, H., Krakauer, J.W., Qian, N.: An optimization principle for determining movement duration. J. Neurophysiol 95(6), 3875–3886 (2006)CrossRef Tanaka, H., Krakauer, J.W., Qian, N.: An optimization principle for determining movement duration. J. Neurophysiol 95(6), 3875–3886 (2006)CrossRef
139.
Zurück zum Zitat Terekhov, A.V., Pesin, Y.B., Niu, X., Latash, M.L., Zatsiorsky, V.M.: An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension. J. Math. Biol. 61(3), 423–453 (2010)MathSciNetMATHCrossRef Terekhov, A.V., Pesin, Y.B., Niu, X., Latash, M.L., Zatsiorsky, V.M.: An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension. J. Math. Biol. 61(3), 423–453 (2010)MathSciNetMATHCrossRef
140.
Zurück zum Zitat Thomas, J.S., Corcos, D.M., Hasan, Z.: Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements. J. Neurophysiol 93(1), 352–364 (2005)CrossRef Thomas, J.S., Corcos, D.M., Hasan, Z.: Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements. J. Neurophysiol 93(1), 352–364 (2005)CrossRef
141.
Zurück zum Zitat Ting, L.H., Macpherson, J.M.: A limited set of muscle synergies for force control during a postural task. J. Neurophysiol 93(1), 609–613 (2005)CrossRef Ting, L.H., Macpherson, J.M.: A limited set of muscle synergies for force control during a postural task. J. Neurophysiol 93(1), 609–613 (2005)CrossRef
142.
Zurück zum Zitat Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol 17(6), 622–628 (2007)CrossRef Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol 17(6), 622–628 (2007)CrossRef
143.
Zurück zum Zitat Ting, L.H., Chiel, H.J., Trumbower, R.D., Allen, J.L., McKay, J.L., Hackney, M.E., Kesar, T.M.: Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 86(1), 38–54 (2015)CrossRef Ting, L.H., Chiel, H.J., Trumbower, R.D., Allen, J.L., McKay, J.L., Hackney, M.E., Kesar, T.M.: Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 86(1), 38–54 (2015)CrossRef
144.
Zurück zum Zitat Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)CrossRef Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)CrossRef
145.
Zurück zum Zitat Todorov, E.: Optimal control theory. In: Doya K (ed.) Bayesian Brain: Probabilistic Approaches to Neural Coding chap 12, pp. 269–298 (2006) Todorov, E.: Optimal control theory. In: Doya K (ed.) Bayesian Brain: Probabilistic Approaches to Neural Coding chap 12, pp. 269–298 (2006)
146.
Zurück zum Zitat Todorov, E.: Compositionality of optimal control laws. Adv. Neural Inf. Process. Syst. 22, 1856–1864 (2009a) Todorov, E.: Compositionality of optimal control laws. Adv. Neural Inf. Process. Syst. 22, 1856–1864 (2009a)
147.
Zurück zum Zitat Todorov, E.: Efficient computation of optimal actions. Proc. Natl. Acad. Sci. U S A 106(28), 11478–11483 (2009b)MATHCrossRef Todorov, E.: Efficient computation of optimal actions. Proc. Natl. Acad. Sci. U S A 106(28), 11478–11483 (2009b)MATHCrossRef
148.
Zurück zum Zitat Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)CrossRef Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)CrossRef
149.
Zurück zum Zitat Todorov, E., Li, W., Pan, X.: From task parameters to motor synergies: a hierarchical framework for approximately-optimal control of redundant manipulators. J. Robot Syst. 22(11), 691–710 (2005)MATHCrossRef Todorov, E., Li, W., Pan, X.: From task parameters to motor synergies: a hierarchical framework for approximately-optimal control of redundant manipulators. J. Robot Syst. 22(11), 691–710 (2005)MATHCrossRef
150.
Zurück zum Zitat Togo, S., Yoshioka, T., Imamizu, H.: Control strategy of hand movement depends on target redundancy. Sci. Rep. 7(45), 722 (2017) Togo, S., Yoshioka, T., Imamizu, H.: Control strategy of hand movement depends on target redundancy. Sci. Rep. 7(45), 722 (2017)
151.
Zurück zum Zitat Toma, S., Sciutti, A., Papaxanthis, C., Pozzo, T.: Visuomotor adaptation to a visual rotation is gravity dependent. J. Neurophysiol 113(6), 1885–1895 (2015)CrossRef Toma, S., Sciutti, A., Papaxanthis, C., Pozzo, T.: Visuomotor adaptation to a visual rotation is gravity dependent. J. Neurophysiol 113(6), 1885–1895 (2015)CrossRef
152.
Zurück zum Zitat Torres-Oviedo, G., Ting, L.H.: Muscle synergies characterizing human postural responses. J. Neurophysiol 98(4), 2144–56 (2007)CrossRef Torres-Oviedo, G., Ting, L.H.: Muscle synergies characterizing human postural responses. J. Neurophysiol 98(4), 2144–56 (2007)CrossRef
153.
Zurück zum Zitat Torres-Oviedo, G., Ting, L.H.: Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J. Neurophysiol 103(6), 3084–98 (2010)CrossRef Torres-Oviedo, G., Ting, L.H.: Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J. Neurophysiol 103(6), 3084–98 (2010)CrossRef
154.
Zurück zum Zitat Torres-Oviedo, G., Macpherson, J.M., Ting, L.H.: Muscle synergy organization is robust across a variety of postural perturbations. J. Neurophysiol 96(3), 1530–1546 (2006)CrossRef Torres-Oviedo, G., Macpherson, J.M., Ting, L.H.: Muscle synergy organization is robust across a variety of postural perturbations. J. Neurophysiol 96(3), 1530–1546 (2006)CrossRef
155.
Zurück zum Zitat Tresch, M.C., Jarc, A.: The case for and against muscle synergies. Curr. Opin. Neurobiol 19(6), 601–7 (2009)CrossRef Tresch, M.C., Jarc, A.: The case for and against muscle synergies. Curr. Opin. Neurobiol 19(6), 601–7 (2009)CrossRef
156.
Zurück zum Zitat Tresch, M.C., Saltiel, P., Bizzi, E.: The construction of movement by the spinal cord. Nat. Neurosci. 2(2), 162–7 (1999)CrossRef Tresch, M.C., Saltiel, P., Bizzi, E.: The construction of movement by the spinal cord. Nat. Neurosci. 2(2), 162–7 (1999)CrossRef
157.
Zurück zum Zitat Tresch, M.C., Cheung, V.C.K., d’Avella, A.: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol 95(4), 2199–2212 (2006)CrossRef Tresch, M.C., Cheung, V.C.K., d’Avella, A.: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol 95(4), 2199–2212 (2006)CrossRef
158.
159.
Zurück zum Zitat Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model. Biol. Cybern. 61(2), 89–101 (1989)CrossRef Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model. Biol. Cybern. 61(2), 89–101 (1989)CrossRef
160.
Zurück zum Zitat Valero-Cuevas, F.J., Venkadesan, M., Todorov, E.: Structured variability of muscle activations supports the minimal intervention principle of motor control. J. Neurophysiol 102(1), 59–68 (2009)CrossRef Valero-Cuevas, F.J., Venkadesan, M., Todorov, E.: Structured variability of muscle activations supports the minimal intervention principle of motor control. J. Neurophysiol 102(1), 59–68 (2009)CrossRef
161.
Zurück zum Zitat Vu, V.H., Isableu. B., Berret, B.: Adaptive use of interaction torque during arm reaching movement from the optimal control viewpoint. Sci. Rep. 6 (2016a) Vu, V.H., Isableu. B., Berret, B.: Adaptive use of interaction torque during arm reaching movement from the optimal control viewpoint. Sci. Rep. 6 (2016a)
162.
Zurück zum Zitat Vu, V.H., Isableu, B., Berret, B.: On the nature of motor planning variables during arm pointing movement: Compositeness and speed dependence. Neuroscience 328, 127–146 (2016b)CrossRef Vu, V.H., Isableu, B., Berret, B.: On the nature of motor planning variables during arm pointing movement: Compositeness and speed dependence. Neuroscience 328, 127–146 (2016b)CrossRef
163.
Zurück zum Zitat Weiss, E.J., Flanders, M.: Muscular and postural synergies of the human hand. J. Neurophysiol 92(1), 523–535 (2004)CrossRef Weiss, E.J., Flanders, M.: Muscular and postural synergies of the human hand. J. Neurophysiol 92(1), 523–535 (2004)CrossRef
164.
Zurück zum Zitat Wolpert, D.M., Landy, M.S.: Motor control is decision-making. Curr. Opin. Neurobiol. 22(6), 996–1003 (2012)CrossRef Wolpert, D.M., Landy, M.S.: Motor control is decision-making. Curr. Opin. Neurobiol. 22(6), 996–1003 (2012)CrossRef
165.
Zurück zum Zitat Yamamoto, S., Kushiro, K.: Direction-dependent differences in temporal kinematics for vertical prehension movements. Exp. Brain Res. 232(2), 703–711 (2014)CrossRef Yamamoto, S., Kushiro, K.: Direction-dependent differences in temporal kinematics for vertical prehension movements. Exp. Brain Res. 232(2), 703–711 (2014)CrossRef
166.
Zurück zum Zitat Yandell, M.B., Zelik, K.E.: Preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate. Sci. Rep. 6 (2016) Yandell, M.B., Zelik, K.E.: Preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate. Sci. Rep. 6 (2016)
167.
Zurück zum Zitat Zelik, K.E., Kuo, A.D.: Mechanical work as an indirect measure of subjective costs influencing human movement. PLoS One 7(2), e31,143 (2012) Zelik, K.E., Kuo, A.D.: Mechanical work as an indirect measure of subjective costs influencing human movement. PLoS One 7(2), e31,143 (2012)
Metadaten
Titel
Optimality and Modularity in Human Movement: From Optimal Control to Muscle Synergies
verfasst von
Bastien Berret
Ioannis Delis
Jérémie Gaveau
Frédéric Jean
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-93870-7_6

Neuer Inhalt