Skip to main content
Erschienen in: Neural Processing Letters 2/2019

05.09.2018

Solving Partial Differential Equation Based on Bernstein Neural Network and Extreme Learning Machine Algorithm

verfasst von: Hongli Sun, Muzhou Hou, Yunlei Yang, Tianle Zhang, Futian Weng, Feng Han

Erschienen in: Neural Processing Letters | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we introduce a new method based on Bernstein Neural Network model (BeNN) and extreme learning machine algorithm to solve the differential equation. In the proposed method, we develop a single-layer functional link BeNN, the hidden layer is eliminated by expanding the input pattern by Bernstein polynomials. The network parameters are obtained by solving a system of linear equations using the extreme learning machine algorithm. Finally, the numerical experiment is carried out by MATLAB, results obtained are compared with the existing method, which proves the feasibility and superiority of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Butcher JC (1987) The numerical analysis of ordinary differential equations: Runge Kutta and general linear methods. Math Comput 51(183):693 Butcher JC (1987) The numerical analysis of ordinary differential equations: Runge Kutta and general linear methods. Math Comput 51(183):693
2.
Zurück zum Zitat Verwer JG (1996) Explicit Runge–Kutta methods for parabolic partial differential equations. Appl Numer Math 22(1–3):359–379MathSciNetMATHCrossRef Verwer JG (1996) Explicit Runge–Kutta methods for parabolic partial differential equations. Appl Numer Math 22(1–3):359–379MathSciNetMATHCrossRef
4.
Zurück zum Zitat Tseng AA, Gu SX (1989) A finite difference scheme with arbitrary mesh system for solving high order partial differential equations. Comput Struct 31(3):319–328MathSciNetMATHCrossRef Tseng AA, Gu SX (1989) A finite difference scheme with arbitrary mesh system for solving high order partial differential equations. Comput Struct 31(3):319–328MathSciNetMATHCrossRef
5.
Zurück zum Zitat Wu B, White RE (2004) One implementation variant of finite difference method for solving ODEs/DAEs. Comput Chem Eng 28(3):303–309CrossRef Wu B, White RE (2004) One implementation variant of finite difference method for solving ODEs/DAEs. Comput Chem Eng 28(3):303–309CrossRef
6.
Zurück zum Zitat Kumar M, Kumar P (2009) Computational method for finding various solutions for a quasilinear elliptic equations with periodic solutions. Adv Eng Softw 40(11):1104–1111MATHCrossRef Kumar M, Kumar P (2009) Computational method for finding various solutions for a quasilinear elliptic equations with periodic solutions. Adv Eng Softw 40(11):1104–1111MATHCrossRef
7.
Zurück zum Zitat Thomee V (2001) From finite difference to finite elements:a short history of numerical analysis of partial differential equations. J Comput Appl Math 128(1–2):1–54MathSciNetMATHCrossRef Thomee V (2001) From finite difference to finite elements:a short history of numerical analysis of partial differential equations. J Comput Appl Math 128(1–2):1–54MathSciNetMATHCrossRef
8.
Zurück zum Zitat Sallam S, Ameen W (1990) Numerical solution of general nth order differential equations via splines. Appl Numer Math 6(3):225–238MathSciNetMATHCrossRef Sallam S, Ameen W (1990) Numerical solution of general nth order differential equations via splines. Appl Numer Math 6(3):225–238MathSciNetMATHCrossRef
9.
Zurück zum Zitat Ei-Hawary HM, Mahmoud SM (2003) Spline collocation methods for solving delay differential equations. Appl Math Comput 146(2–3):359–372MathSciNetMATH Ei-Hawary HM, Mahmoud SM (2003) Spline collocation methods for solving delay differential equations. Appl Math Comput 146(2–3):359–372MathSciNetMATH
10.
Zurück zum Zitat Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural networks. Neurocomputing 72(10–12):2385–2391CrossRef Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural networks. Neurocomputing 72(10–12):2385–2391CrossRef
11.
Zurück zum Zitat Liu J, Hou G (2011) Numerical solutions of the space-and time-fractional coupled Burgers equations by generalized differential transform method. Appl Math Comput 217(16):7001–7008MathSciNetMATH Liu J, Hou G (2011) Numerical solutions of the space-and time-fractional coupled Burgers equations by generalized differential transform method. Appl Math Comput 217(16):7001–7008MathSciNetMATH
12.
Zurück zum Zitat Darnia P, Ebadian A (2007) A method for the numerical solution of the integro-differential equations. Appl Math Comput 188(1):657–668MathSciNet Darnia P, Ebadian A (2007) A method for the numerical solution of the integro-differential equations. Appl Math Comput 188(1):657–668MathSciNet
13.
Zurück zum Zitat Kumar M, Singh N (2009) A collection of computational techniques for solving singular boundary value problems. Adv Eng Softw 40(4):288–297MATHCrossRef Kumar M, Singh N (2009) A collection of computational techniques for solving singular boundary value problems. Adv Eng Softw 40(4):288–297MATHCrossRef
14.
Zurück zum Zitat Wang Q, Cheng D (2005) Numerical solution of damped nonlinear Klein–Gordon equations using variational method and finite element approach. Appl Math Comput 162(1):381–401MathSciNetMATH Wang Q, Cheng D (2005) Numerical solution of damped nonlinear Klein–Gordon equations using variational method and finite element approach. Appl Math Comput 162(1):381–401MathSciNetMATH
15.
Zurück zum Zitat Kumar M, Singh N (2010) Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems. Comput Chem Eng 34(11):1750–1760CrossRef Kumar M, Singh N (2010) Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems. Comput Chem Eng 34(11):1750–1760CrossRef
16.
Zurück zum Zitat Yang X, Liu Y, Bai S (2006) A numerical solution of second order linear partial differential equation by differential transform. Appl Math Comput 173(2):792–802MathSciNetMATH Yang X, Liu Y, Bai S (2006) A numerical solution of second order linear partial differential equation by differential transform. Appl Math Comput 173(2):792–802MathSciNetMATH
17.
Zurück zum Zitat Erturk VS, Momani S (2008) Solving system of fractional differential equations using differential transform method. J Comput Appl Math 215(1):142–151MathSciNetMATHCrossRef Erturk VS, Momani S (2008) Solving system of fractional differential equations using differential transform method. J Comput Appl Math 215(1):142–151MathSciNetMATHCrossRef
18.
Zurück zum Zitat Coronel-Escamilla A, Gomez-Aguilar JF, Torres L, Escobar-Jimenez RF, Valtierra-Rodriguez M (2017) Synchronization of chaotic systems involving fractional operators of Liouville–Caputo type with variable-order. Phys A 487:1–21MathSciNetCrossRef Coronel-Escamilla A, Gomez-Aguilar JF, Torres L, Escobar-Jimenez RF, Valtierra-Rodriguez M (2017) Synchronization of chaotic systems involving fractional operators of Liouville–Caputo type with variable-order. Phys A 487:1–21MathSciNetCrossRef
19.
Zurück zum Zitat Coronel-Escamilla A, Gomez-Aguilar JF, Torres L, Escobar-Jimenez RF (2018) A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys A 491:406–424MathSciNetCrossRef Coronel-Escamilla A, Gomez-Aguilar JF, Torres L, Escobar-Jimenez RF (2018) A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys A 491:406–424MathSciNetCrossRef
20.
Zurück zum Zitat Zuniga-Aguilar CJ, Gomez-Aguilar JF, Escobar-Jimenez RF, Romero-Ugalde HM (2018) Robust control for fractional variable-order chaotic systems with non-singular kernel. Eur Phys J Plus 133(1):1–13MATHCrossRef Zuniga-Aguilar CJ, Gomez-Aguilar JF, Escobar-Jimenez RF, Romero-Ugalde HM (2018) Robust control for fractional variable-order chaotic systems with non-singular kernel. Eur Phys J Plus 133(1):1–13MATHCrossRef
21.
Zurück zum Zitat Yazdi HS, Pakdaman M, Modaghegh H (2011) Unsupervised kernel least mean square algorithm for solving ordinary differential equations. Neurocomputing 74(12–13):2062–2071CrossRef Yazdi HS, Pakdaman M, Modaghegh H (2011) Unsupervised kernel least mean square algorithm for solving ordinary differential equations. Neurocomputing 74(12–13):2062–2071CrossRef
22.
Zurück zum Zitat Lagaris IE, Likas A (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef Lagaris IE, Likas A (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef
23.
Zurück zum Zitat Lagaris IE, Likas AC (2000) Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Netw 11(5):1041CrossRef Lagaris IE, Likas AC (2000) Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Netw 11(5):1041CrossRef
24.
Zurück zum Zitat Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw 14(2):185–199MATHCrossRef Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw 14(2):185–199MATHCrossRef
25.
Zurück zum Zitat Aarts LP, Veer PVD (2001) Neural network method for solving partial differential equations. Neural Process Lett 14(3):261–271MATHCrossRef Aarts LP, Veer PVD (2001) Neural network method for solving partial differential equations. Neural Process Lett 14(3):261–271MATHCrossRef
26.
Zurück zum Zitat Mai-Duy N, Tran-Cong T (2003) Approximation of function and its derivatives using radial basis function networks. Appl Math Model 27(3):197–220MATHCrossRef Mai-Duy N, Tran-Cong T (2003) Approximation of function and its derivatives using radial basis function networks. Appl Math Model 27(3):197–220MATHCrossRef
27.
Zurück zum Zitat Li J, Luo S, Qi Y, Huang Y (2003) Numerical solution of elliptic partial differential equation using radial basis function neural networks. IJCNN 16(5–6):85–90 Li J, Luo S, Qi Y, Huang Y (2003) Numerical solution of elliptic partial differential equation using radial basis function neural networks. IJCNN 16(5–6):85–90
29.
Zurück zum Zitat Xu LY, Wen H, Zeng ZZ (2007) The algorithm of neural networks on the initial value problems in ordinary differential equations. In: IEEE conference on industrial electronics & applications, pp 813–816 Xu LY, Wen H, Zeng ZZ (2007) The algorithm of neural networks on the initial value problems in ordinary differential equations. In: IEEE conference on industrial electronics & applications, pp 813–816
30.
Zurück zum Zitat Aein MJ, Talebi HA (2009) Introducing a training methodology for cellular neural networks solving partial differential equations. IJCNN, Atlanta, Georgia, USA, June 14–19, pp 71–75 Aein MJ, Talebi HA (2009) Introducing a training methodology for cellular neural networks solving partial differential equations. IJCNN, Atlanta, Georgia, USA, June 14–19, pp 71–75
31.
Zurück zum Zitat Beidokhti RS, Malek A (2009) Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J Franklin Inst 346(9):898–913MathSciNetMATHCrossRef Beidokhti RS, Malek A (2009) Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J Franklin Inst 346(9):898–913MathSciNetMATHCrossRef
32.
Zurück zum Zitat Xu C, Wang C, Ji F, Yuan X (2012) Finite-element neural network-based solving 3-D differential equations in MFL. IEEE Trans Magn 48(12):4747–4756CrossRef Xu C, Wang C, Ji F, Yuan X (2012) Finite-element neural network-based solving 3-D differential equations in MFL. IEEE Trans Magn 48(12):4747–4756CrossRef
33.
Zurück zum Zitat Mcfall KS (2013) Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J Franklin Inst 350(2):300–317MathSciNetMATHCrossRef Mcfall KS (2013) Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J Franklin Inst 350(2):300–317MathSciNetMATHCrossRef
34.
Zurück zum Zitat Zuniga-Aguilar CJ, Romero-Ugalde HM, Gomez-Aguilar JF, Escobar-Jimenez RF, Valtierra-Rodriguez M (2017) Solving fractional differential equations of variable-order involving operators with Mittag–Leffler kernel using artificial neural networks. Chaos Soliton Fract 103:382–403MathSciNetMATHCrossRef Zuniga-Aguilar CJ, Romero-Ugalde HM, Gomez-Aguilar JF, Escobar-Jimenez RF, Valtierra-Rodriguez M (2017) Solving fractional differential equations of variable-order involving operators with Mittag–Leffler kernel using artificial neural networks. Chaos Soliton Fract 103:382–403MathSciNetMATHCrossRef
35.
Zurück zum Zitat Pao YH, Phillips SM (1995) The functional link net and learning optimal control. Neurocomputing 9(2):149–164MATHCrossRef Pao YH, Phillips SM (1995) The functional link net and learning optimal control. Neurocomputing 9(2):149–164MATHCrossRef
36.
Zurück zum Zitat Lee TT, Jeng JT (1998) The Chebyshev-polynomials based unified model neural networks for function approximation. IEEE Trans Syst Man Cybern 28(6):925–935CrossRef Lee TT, Jeng JT (1998) The Chebyshev-polynomials based unified model neural networks for function approximation. IEEE Trans Syst Man Cybern 28(6):925–935CrossRef
37.
Zurück zum Zitat Yang SS, Tseng CS (1996) An orthogonal neural network for function approximation. IEEE Trans Syst Man Cybern 26(5):779CrossRef Yang SS, Tseng CS (1996) An orthogonal neural network for function approximation. IEEE Trans Syst Man Cybern 26(5):779CrossRef
38.
Zurück zum Zitat Patra JC, Juhola M, Meher PK (2008) Intelligent sensors using computationally efficient Chebyshev neural networks. IET Sci Meas Technol 2(2):68–75CrossRef Patra JC, Juhola M, Meher PK (2008) Intelligent sensors using computationally efficient Chebyshev neural networks. IET Sci Meas Technol 2(2):68–75CrossRef
39.
Zurück zum Zitat Weng WD, Yang CS, Lin RC (2007) A channel equalizer using reduced decision feedback Chebyshev functional link artificial neural networks. Inf Sci 177(13):2642–2654MATHCrossRef Weng WD, Yang CS, Lin RC (2007) A channel equalizer using reduced decision feedback Chebyshev functional link artificial neural networks. Inf Sci 177(13):2642–2654MATHCrossRef
40.
Zurück zum Zitat Patra JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural network. IEEE Trans Syst Man Cybern 32(4):505–511CrossRef Patra JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural network. IEEE Trans Syst Man Cybern 32(4):505–511CrossRef
41.
Zurück zum Zitat Purwar S, Kar IN, Jha AN (2007) Online system identification of complex systems using Chebyshev neural network. Appl Soft Comput 7(1):364–372CrossRef Purwar S, Kar IN, Jha AN (2007) Online system identification of complex systems using Chebyshev neural network. Appl Soft Comput 7(1):364–372CrossRef
43.
Zurück zum Zitat Mall S, Chakraverty S (2017) Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett 45(3):825–840CrossRef Mall S, Chakraverty S (2017) Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett 45(3):825–840CrossRef
44.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501CrossRef
Metadaten
Titel
Solving Partial Differential Equation Based on Bernstein Neural Network and Extreme Learning Machine Algorithm
verfasst von
Hongli Sun
Muzhou Hou
Yunlei Yang
Tianle Zhang
Futian Weng
Feng Han
Publikationsdatum
05.09.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9911-8

Weitere Artikel der Ausgabe 2/2019

Neural Processing Letters 2/2019 Zur Ausgabe

Neuer Inhalt