Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 22/2018

10.09.2018

Extended visible light harvesting and boosted charge carrier dynamics in heterostructured zirconate–FeS2 photocatalysts for efficient solar water splitting

verfasst von: Ali M. Huerta-Flores, J. M. Mora-Hernández, Leticia M. Torres-Martínez, Edgar Moctezuma, D. Sánchez-Martínez, María E. Zarazúa-Morín, Björn Wickman

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 22/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Limited visible light absorption, slow charge transference, and high recombination are some of the main problems associated with low efficiency in photocatalytic processes. For these reasons, in the present work, we develope novel zirconate–FeS2 heterostructured photocatalysts with improved visible light harvesting, effective charge separation and high photocatalytic water splitting performance. Herein, alkali and alkaline earth metal zirconates are prepared by a solid state reaction and coupled to FeS2 through a simple wet impregnation method. The incorporation of FeS2 particles induces visible light absorption and electron injection in zirconates, while the appropriate coupling of the semiconductors in the heterostructure allows an enhanced charge separation and suppression of the recombination. The obtained heterostructures exhibit high and stable photocatalytic activity for water splitting under visible light, showing competitive efficiencies among other reported materials. The highest hydrogen evolution rate (4490 µmol g−1 h−1) is shown for BaZrO3–FeS2 and corresponds to more than 20 times the activity of the bare BaZrO3. In summary, this work proposes novel visible light active heterostructures for efficient visible light photocatalytic water splitting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)CrossRef S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)CrossRef
2.
Zurück zum Zitat M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Water splitting: one-dimensional TiO2-nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017)CrossRef M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Water splitting: one-dimensional TiO2-nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017)CrossRef
3.
Zurück zum Zitat M. Li, Y. Chen, W. Li, X. Li, H. Tian, X. Wei, Z. Ren, G. Han, Ultrathin anatase TiO2 nanosheets for high-performance photocatalytic hydrogen production. Small 13, 1604115 (2017)CrossRef M. Li, Y. Chen, W. Li, X. Li, H. Tian, X. Wei, Z. Ren, G. Han, Ultrathin anatase TiO2 nanosheets for high-performance photocatalytic hydrogen production. Small 13, 1604115 (2017)CrossRef
4.
Zurück zum Zitat Q. Wang, Y. Shi, Q. Ma, D. Gao, J. Zhong, J. Li, F. Wang, Y. He, R. Wang, A flower-like TiO2 with photocatalytic hydrogen evolution activity modified by Zn(II) porphyrin photocatalysts. J. Mater. Sci. Mater. Electron. 28, 2123–2127 (2016)CrossRef Q. Wang, Y. Shi, Q. Ma, D. Gao, J. Zhong, J. Li, F. Wang, Y. He, R. Wang, A flower-like TiO2 with photocatalytic hydrogen evolution activity modified by Zn(II) porphyrin photocatalysts. J. Mater. Sci. Mater. Electron. 28, 2123–2127 (2016)CrossRef
5.
Zurück zum Zitat H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600464 (2016)CrossRef H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600464 (2016)CrossRef
6.
Zurück zum Zitat A. Samokhvalov, Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 72, 981–1000 (2017)CrossRef A. Samokhvalov, Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 72, 981–1000 (2017)CrossRef
7.
Zurück zum Zitat R.A. Rather, S. Singh, B. Pal, A Cu+1/Cu0-TiO2 mesoporous nanocomposite exhibits improved H2 production from H2O under direct solar irradiation. J. Catal. 346, 1–9 (2017)CrossRef R.A. Rather, S. Singh, B. Pal, A Cu+1/Cu0-TiO2 mesoporous nanocomposite exhibits improved H2 production from H2O under direct solar irradiation. J. Catal. 346, 1–9 (2017)CrossRef
8.
Zurück zum Zitat A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRef A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRef
9.
Zurück zum Zitat M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain. Energy Rev. 11, 401–425 (2007)CrossRef M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain. Energy Rev. 11, 401–425 (2007)CrossRef
10.
Zurück zum Zitat T. Sreethawong, S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. Int. J. Hydrogen Energy 31, 786–796 (2006)CrossRef T. Sreethawong, S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. Int. J. Hydrogen Energy 31, 786–796 (2006)CrossRef
11.
Zurück zum Zitat Y. Inoue, Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009)CrossRef Y. Inoue, Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009)CrossRef
12.
Zurück zum Zitat T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21(7), 900 (2016)CrossRef T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21(7), 900 (2016)CrossRef
13.
Zurück zum Zitat A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, Overall photocatalytic water splitting on Na2ZrxTi6−xO13 (x = 0,1) nanobelts modified with metal oxide nanoparticles as cocatalysts. Int. J. Hydrogen Energy 42, 14547–14559 (2017)CrossRef A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, Overall photocatalytic water splitting on Na2ZrxTi6−xO13 (x = 0,1) nanobelts modified with metal oxide nanoparticles as cocatalysts. Int. J. Hydrogen Energy 42, 14547–14559 (2017)CrossRef
14.
Zurück zum Zitat S. Tanigawa, T. Takashima, H. Irie, Enhanced visible-light-sensitive two-step overall water-splitting based on band structure controls of titanium dioxide and strontium titanate. J. Mater. Sci. Chem. Eng. 5, 129–141 (2017) S. Tanigawa, T. Takashima, H. Irie, Enhanced visible-light-sensitive two-step overall water-splitting based on band structure controls of titanium dioxide and strontium titanate. J. Mater. Sci. Chem. Eng. 5, 129–141 (2017)
15.
Zurück zum Zitat A. Alzahrani, D. Barbash, A. Samokhvalov, “One-pot” synthesis and photocatalytic hydrogen generation with nanocrystalline Ag(0)/CaTiO3 and in situ mechanistic studies. J. Phys. Chem. C 120, 19970–19979 (2016)CrossRef A. Alzahrani, D. Barbash, A. Samokhvalov, “One-pot” synthesis and photocatalytic hydrogen generation with nanocrystalline Ag(0)/CaTiO3 and in situ mechanistic studies. J. Phys. Chem. C 120, 19970–19979 (2016)CrossRef
16.
Zurück zum Zitat A.M. Huerta-Flores, J. Chen, L.M. Torres-Martínez, A. Ito, E. Moctezuma, T. Goto, Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution. Fuel 197, 174–185 (2017)CrossRef A.M. Huerta-Flores, J. Chen, L.M. Torres-Martínez, A. Ito, E. Moctezuma, T. Goto, Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution. Fuel 197, 174–185 (2017)CrossRef
17.
Zurück zum Zitat M. Matsuoka, Y. Ide, M. Ogawa, Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate. Phys. Chem. Chem. Phys. 16, 3520–3522 (2014)CrossRef M. Matsuoka, Y. Ide, M. Ogawa, Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate. Phys. Chem. Chem. Phys. 16, 3520–3522 (2014)CrossRef
18.
Zurück zum Zitat T. Grewe, H. Tüysüz, Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Appl. Mater. Interfaces 7, 23153–23162 (2015)CrossRef T. Grewe, H. Tüysüz, Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Appl. Mater. Interfaces 7, 23153–23162 (2015)CrossRef
19.
Zurück zum Zitat K. Saito, K. Koga, A. Kudo, amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Dalton Trans. 40, 3909–3913 (2011)CrossRef K. Saito, K. Koga, A. Kudo, amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Dalton Trans. 40, 3909–3913 (2011)CrossRef
20.
Zurück zum Zitat Y. Miseki, A. Kudo, Water splitting over new niobate photocatalysts with tungsten-bronze-type structure and effect of transition metal-doping. Chem. Sust. Chem. 4, 245–251 (2011) Y. Miseki, A. Kudo, Water splitting over new niobate photocatalysts with tungsten-bronze-type structure and effect of transition metal-doping. Chem. Sust. Chem. 4, 245–251 (2011)
21.
Zurück zum Zitat K. Nakagawa, T. Jia, W. Zheng, S.M. Fairclough, M. Katoh, S. Sugiyama, S.C.E. Tsang, Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles. Chem. Commun. 50, 13702–13705 (2014)CrossRef K. Nakagawa, T. Jia, W. Zheng, S.M. Fairclough, M. Katoh, S. Sugiyama, S.C.E. Tsang, Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles. Chem. Commun. 50, 13702–13705 (2014)CrossRef
22.
Zurück zum Zitat A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, SrZrO3 powders: alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting. Fuel 158, 66–71 (2015)CrossRef A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, SrZrO3 powders: alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting. Fuel 158, 66–71 (2015)CrossRef
23.
Zurück zum Zitat A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, O. Ceballos-Sánchez, Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel 181, 670–679 (2016)CrossRef A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, O. Ceballos-Sánchez, Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel 181, 670–679 (2016)CrossRef
24.
Zurück zum Zitat Z. Khan, M. Qureshi, Tantalum doped BaZrO3 for efficient photocatalytic hydrogen generation by water splitting. Catal. Commun. 28, 82–85 (2012)CrossRef Z. Khan, M. Qureshi, Tantalum doped BaZrO3 for efficient photocatalytic hydrogen generation by water splitting. Catal. Commun. 28, 82–85 (2012)CrossRef
25.
Zurück zum Zitat P. Wu, J. Shi, Z. Zhou, W. Tang, L. Guo, CaTaO2N-CaZrO3 solid solution: Band-structure engineering and visible-light-driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 37, 13704–13710 (2012)CrossRef P. Wu, J. Shi, Z. Zhou, W. Tang, L. Guo, CaTaO2N-CaZrO3 solid solution: Band-structure engineering and visible-light-driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 37, 13704–13710 (2012)CrossRef
26.
Zurück zum Zitat N. Tiwari, R.K. Kuraria, S.R. Kuraria, R.K. Tamrakar, Mechanoluminescence, photoluminescence and thermoluminiscence studies of SrZrO3:Ce phosphor. J. Radiat. Res. Appl. Sci. 8, 68–76 (2015)CrossRef N. Tiwari, R.K. Kuraria, S.R. Kuraria, R.K. Tamrakar, Mechanoluminescence, photoluminescence and thermoluminiscence studies of SrZrO3:Ce phosphor. J. Radiat. Res. Appl. Sci. 8, 68–76 (2015)CrossRef
27.
Zurück zum Zitat L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and Green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloy. Compd. 471, 253–258 (2009)CrossRef L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and Green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloy. Compd. 471, 253–258 (2009)CrossRef
28.
Zurück zum Zitat E.C.C. De Souza, R. Muccillo, Properties and applications of perovskite proton conductors. Mater. Res. 13, 385–394 (2010)CrossRef E.C.C. De Souza, R. Muccillo, Properties and applications of perovskite proton conductors. Mater. Res. 13, 385–394 (2010)CrossRef
29.
Zurück zum Zitat J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4, 2917–2940 (2014)CrossRef J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4, 2917–2940 (2014)CrossRef
30.
Zurück zum Zitat F. Dogan, H. Lin, M. Guilloux-Viry, O. Peña, Focus on properties and applications of perovskites. Adv. Mater. 16, 020301 (2015) F. Dogan, H. Lin, M. Guilloux-Viry, O. Peña, Focus on properties and applications of perovskites. Adv. Mater. 16, 020301 (2015)
31.
Zurück zum Zitat G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45, 5951–5984 (2016)CrossRef G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45, 5951–5984 (2016)CrossRef
32.
Zurück zum Zitat L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, A. Michalowicz, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloys Compd. 471, 253–258 (2009)CrossRef L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, A. Michalowicz, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloys Compd. 471, 253–258 (2009)CrossRef
33.
Zurück zum Zitat A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, J.E. Carrera-Crespo, Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: band engineering and charge transference mechanism. J. Photochem. Photobiol. A 356, 166–176 (2018)CrossRef A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, J.E. Carrera-Crespo, Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: band engineering and charge transference mechanism. J. Photochem. Photobiol. A 356, 166–176 (2018)CrossRef
34.
Zurück zum Zitat L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9096-y CrossRef L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. (2018). https://​doi.​org/​10.​1007/​s10854-018-9096-y CrossRef
35.
Zurück zum Zitat Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013)CrossRef Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013)CrossRef
36.
Zurück zum Zitat P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. Kamler, E.L. Extrom, J. Olejnicek, S.A. Darveau. Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties, Proceedings of the 35th Photovoltaics Specialists Conference, Institute of Electrical and Electronics Engineeris (IEEE), 002965–002969 (2010) P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. Kamler, E.L. Extrom, J. Olejnicek, S.A. Darveau. Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties, Proceedings of the 35th Photovoltaics Specialists Conference, Institute of Electrical and Electronics Engineeris (IEEE), 002965–002969 (2010)
37.
Zurück zum Zitat P. Prabukanthan, R.J. Soukup, N.J. Ianno, C.A. Kamler, D.G. Sekora, Formation of pyrite (FeS2) thin films by thermal sulfurization magnetron sputtered iron. J. Vac. Sci. Technol. A 29(1–5), 011001 (2011) P. Prabukanthan, R.J. Soukup, N.J. Ianno, C.A. Kamler, D.G. Sekora, Formation of pyrite (FeS2) thin films by thermal sulfurization magnetron sputtered iron. J. Vac. Sci. Technol. A 29(1–5), 011001 (2011)
38.
Zurück zum Zitat A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, A.P. Singh, B. Wickman, Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9259-x CrossRef A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, A.P. Singh, B. Wickman, Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal. J. Mater. Sci. (2018). https://​doi.​org/​10.​1007/​s10854-018-9259-x CrossRef
39.
Zurück zum Zitat P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Structural, morphological, electrocatalytic activity and photocurrent properties of electrochemically deposited FeS2 thin films. J. Mater. Sci. 29, 11951–11963 (2018) P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Structural, morphological, electrocatalytic activity and photocurrent properties of electrochemically deposited FeS2 thin films. J. Mater. Sci. 29, 11951–11963 (2018)
40.
Zurück zum Zitat M. Wang, H. Qin, Y. Fang, J. Liu, L. Meng, FeS2-sensitized ZnO/ZnS nanorod arrays for the photoanodes of quantum-dot-sensitized solar cells. RSC Adv. 5, 105324–105328 (2015)CrossRef M. Wang, H. Qin, Y. Fang, J. Liu, L. Meng, FeS2-sensitized ZnO/ZnS nanorod arrays for the photoanodes of quantum-dot-sensitized solar cells. RSC Adv. 5, 105324–105328 (2015)CrossRef
41.
Zurück zum Zitat T.R. Kuo, H.J. Liao, Y.T. Chen, C.Y. Wei, C.C. Chang, Y.C. Chen, Y.H. Chang, J.C. Lin, Y.C. Lee, C.Y. Wen, S.S. Li, K.H. Lin, D.Y. Wang, Extended visible to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for highly active photocatalytic hydrogen evolution. Green Chem. 20, 1640–1647 (2018)CrossRef T.R. Kuo, H.J. Liao, Y.T. Chen, C.Y. Wei, C.C. Chang, Y.C. Chen, Y.H. Chang, J.C. Lin, Y.C. Lee, C.Y. Wen, S.S. Li, K.H. Lin, D.Y. Wang, Extended visible to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for highly active photocatalytic hydrogen evolution. Green Chem. 20, 1640–1647 (2018)CrossRef
42.
Zurück zum Zitat Y. Zhong, J. Liu, Z. Lu, H. Xia, Hierarchical FeS2 nanosheet@Fe2O3 nanosphere heterostructure as promising electrode material for supercapacitors. Mater. Lett. 166, 223–226 (2016)CrossRef Y. Zhong, J. Liu, Z. Lu, H. Xia, Hierarchical FeS2 nanosheet@Fe2O3 nanosphere heterostructure as promising electrode material for supercapacitors. Mater. Lett. 166, 223–226 (2016)CrossRef
43.
Zurück zum Zitat M. Gong, Q. Liu, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, J.Z. Wu, Printable nanocomposite FeS2-PbS nanocrystals/graphene heterojunction photodetectors for broadband photodetection. ACS Appl. Mater. Interfaces 9(33), 27801–27808 (2017)CrossRef M. Gong, Q. Liu, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, J.Z. Wu, Printable nanocomposite FeS2-PbS nanocrystals/graphene heterojunction photodetectors for broadband photodetection. ACS Appl. Mater. Interfaces 9(33), 27801–27808 (2017)CrossRef
44.
Zurück zum Zitat Q. Tian, L. Zhang, J. Liu, N. Li, Q. Ma, J. Zhou, Y. Sun, Synthesis of MoS2/SrZrO3 heterostructures and their photocatalytic H2 evolution under UV irradiation. RSC Adv. 5, 734–739 (2015)CrossRef Q. Tian, L. Zhang, J. Liu, N. Li, Q. Ma, J. Zhou, Y. Sun, Synthesis of MoS2/SrZrO3 heterostructures and their photocatalytic H2 evolution under UV irradiation. RSC Adv. 5, 734–739 (2015)CrossRef
45.
Zurück zum Zitat L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. Mater. Electron 29(12), 10395–10410 (2018)CrossRef L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. Mater. Electron 29(12), 10395–10410 (2018)CrossRef
46.
Zurück zum Zitat J. Meng, X. Fu, K. Du, X. Chen, Q. Lin, X. Wei, J. Li, Z. Zhang, BaZrO3 hollow nanostructure with Fe (III) doping for photocatalytic hydrogen evolution under visible light. Int. J. Hydrogen Energy 43, 9224–9232 (2018)CrossRef J. Meng, X. Fu, K. Du, X. Chen, Q. Lin, X. Wei, J. Li, Z. Zhang, BaZrO3 hollow nanostructure with Fe (III) doping for photocatalytic hydrogen evolution under visible light. Int. J. Hydrogen Energy 43, 9224–9232 (2018)CrossRef
47.
Zurück zum Zitat G.C. Mather, C. Dussarrat, J. Etourneau, A.R. West, A review of cation-ordered rock salt superstructure oxides. J. Mater. Chem. 10, 2219–2230 (2000)CrossRef G.C. Mather, C. Dussarrat, J. Etourneau, A.R. West, A review of cation-ordered rock salt superstructure oxides. J. Mater. Chem. 10, 2219–2230 (2000)CrossRef
48.
Zurück zum Zitat I. Rodionov, A. ZverevaI, Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russ. Chem. Rev. 85, 248–279 (2016)CrossRef I. Rodionov, A. ZverevaI, Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russ. Chem. Rev. 85, 248–279 (2016)CrossRef
49.
Zurück zum Zitat Q. Wang, J.H. Sohn, S.Y. Park, J.S. Choi, J.Y. Lee, J.S. Chung, Preparation and catalytic activity of K4Zr5O12 for the oxidation of soot from vehicle engine emissions. J. Ind. Eng. Chem. 16, 68–73 (2010)CrossRef Q. Wang, J.H. Sohn, S.Y. Park, J.S. Choi, J.Y. Lee, J.S. Chung, Preparation and catalytic activity of K4Zr5O12 for the oxidation of soot from vehicle engine emissions. J. Ind. Eng. Chem. 16, 68–73 (2010)CrossRef
50.
Zurück zum Zitat Y. Yang, Y. Sun, Y. Jiang, Structure and photocatalytic property of perovskite and perovskite-related compounds. Mater. Chem. Phys. 96, 234–239 (2006)CrossRef Y. Yang, Y. Sun, Y. Jiang, Structure and photocatalytic property of perovskite and perovskite-related compounds. Mater. Chem. Phys. 96, 234–239 (2006)CrossRef
51.
Zurück zum Zitat T.J. Bastow, P.J. Dirken, M.E. Smith, Factors controlling the 17O NMR chemical shift in ionic mixed metal oxides. J. Phys. Chem. 100, 18539–18545 (1996)CrossRef T.J. Bastow, P.J. Dirken, M.E. Smith, Factors controlling the 17O NMR chemical shift in ionic mixed metal oxides. J. Phys. Chem. 100, 18539–18545 (1996)CrossRef
52.
Zurück zum Zitat R.I. Eglitis, Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ionics 230, 43–47 (2013)CrossRef R.I. Eglitis, Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ionics 230, 43–47 (2013)CrossRef
53.
Zurück zum Zitat P. Stoch, L.J. Szczerba, D. Madej, Z. Pedzich, Crystal structure and ab initio calculations of CaZrO3. J. Eur. Ceram. Soc. 32, 665–670 (2012)CrossRef P. Stoch, L.J. Szczerba, D. Madej, Z. Pedzich, Crystal structure and ab initio calculations of CaZrO3. J. Eur. Ceram. Soc. 32, 665–670 (2012)CrossRef
54.
Zurück zum Zitat G. Celik, S. Cabuk, First-principles study of electronic structure and optical properties of Sr(Ti,Zr)O3. Cent. Eur. J. Phys. 11, 387–393 (2013) G. Celik, S. Cabuk, First-principles study of electronic structure and optical properties of Sr(Ti,Zr)O3. Cent. Eur. J. Phys. 11, 387–393 (2013)
55.
Zurück zum Zitat Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye, Y. Bi, Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci Rep 3, 2720 (2013)CrossRef Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye, Y. Bi, Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci Rep 3, 2720 (2013)CrossRef
56.
Zurück zum Zitat V.M. Longo, L.S. Cavalcante, M.G.S. Costa, M.L. Moreira, A.T. De Figueiredo, J. Andrés, J. Varela, E. Longo, First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor. Chem. Acc. 124, 385–394 (2009)CrossRef V.M. Longo, L.S. Cavalcante, M.G.S. Costa, M.L. Moreira, A.T. De Figueiredo, J. Andrés, J. Varela, E. Longo, First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor. Chem. Acc. 124, 385–394 (2009)CrossRef
57.
Zurück zum Zitat M. Wiegel, M.H.J. Emond, E.R. Stobbe, G. Blasse, Luminescence of alkali tantalates and niobates. J. Phys. Chem. Solids 55, 773–778 (1994)CrossRef M. Wiegel, M.H.J. Emond, E.R. Stobbe, G. Blasse, Luminescence of alkali tantalates and niobates. J. Phys. Chem. Solids 55, 773–778 (1994)CrossRef
58.
Zurück zum Zitat M. Wiegel, M. Hamoumi, G. Blasse, Luminescence and non linear optical properties of perovskite-like niobates and titanates. Mater. Chem. Phys. 36, 289–293 (1994)CrossRef M. Wiegel, M. Hamoumi, G. Blasse, Luminescence and non linear optical properties of perovskite-like niobates and titanates. Mater. Chem. Phys. 36, 289–293 (1994)CrossRef
59.
Zurück zum Zitat B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 7, 2592–2597 (2014)CrossRef B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 7, 2592–2597 (2014)CrossRef
60.
Zurück zum Zitat G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D.J. Miller, L.A. Curtiss, X. Ji, K. Amine, Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2, 17090 (2017)CrossRef G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D.J. Miller, L.A. Curtiss, X. Ji, K. Amine, Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2, 17090 (2017)CrossRef
61.
Zurück zum Zitat X. Wang, J. Xie, C. Min-Li, Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 3, 1235–1242 (2015)CrossRef X. Wang, J. Xie, C. Min-Li, Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 3, 1235–1242 (2015)CrossRef
62.
Zurück zum Zitat M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film. Nanoscale Res. Lett. 10, 54 (2015)CrossRef M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film. Nanoscale Res. Lett. 10, 54 (2015)CrossRef
63.
Zurück zum Zitat X. Gao, X. Liu, Z. Zhu, X. Wang, Z. Xie, Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Sci. Rep. 6, 30543 (2016)CrossRef X. Gao, X. Liu, Z. Zhu, X. Wang, Z. Xie, Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Sci. Rep. 6, 30543 (2016)CrossRef
64.
Zurück zum Zitat H. Shen, Y. Lu, Y. Wang, Z. Pan, G. Cao, X. Yan, G. Fang, Low temperature hydrothermal synthesis of SrTiO3 nanoparticles without alkali and their effective photocatalytic activity. J. Adv. Ceram. 5, 298–307 (2016)CrossRef H. Shen, Y. Lu, Y. Wang, Z. Pan, G. Cao, X. Yan, G. Fang, Low temperature hydrothermal synthesis of SrTiO3 nanoparticles without alkali and their effective photocatalytic activity. J. Adv. Ceram. 5, 298–307 (2016)CrossRef
65.
Zurück zum Zitat H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010)CrossRef H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010)CrossRef
Metadaten
Titel
Extended visible light harvesting and boosted charge carrier dynamics in heterostructured zirconate–FeS2 photocatalysts for efficient solar water splitting
verfasst von
Ali M. Huerta-Flores
J. M. Mora-Hernández
Leticia M. Torres-Martínez
Edgar Moctezuma
D. Sánchez-Martínez
María E. Zarazúa-Morín
Björn Wickman
Publikationsdatum
10.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 22/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0019-8

Weitere Artikel der Ausgabe 22/2018

Journal of Materials Science: Materials in Electronics 22/2018 Zur Ausgabe

Neuer Inhalt