Skip to main content
Log in

Continuous and discrete mathematical models of tumor-induced angiogenesis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a process whereby capillary sprouts are formed in response to externally supplied chemical stimuli. The sprouts then grow and develop, driven initially by endothelial-cell migration, and organize themselves into a dendritic structure. Subsequent cell proliferation near the sprout tip permits further extension of the capillary and ultimately completes the process. Angiogenesis occurs during embryogenesis, wound healing, arthritis and during the growth of solid tumors. In this paper we present both continuous and discrete mathematical models which describe the formation of the capillary sprout network in response to chemical stimuli (tumor angiogenic factors, TAF) supplied by a solid tumor. The models also take into account essential endothelial cell-extracellular matrix interactions via the inclusion of the matrix macromolecule fibronectin. The continuous model consists of a system of nonlinear partial differential equations describing the initial migratory response of endothelial cells to the TAF and the fibronectin. Numerical simulations of the system, using parameter values based on experimental data, are presented and compared qualitatively with in vivo experiments. We then use a discretized form of the partial differential equations to develop a biased random-walk model which enables us to track individual endothelial cells at the sprout tips and incorporate anastomosis, mitosis and branching explicitly into the model. The theoretical capillary networks generated by computer simulations of the discrete model are compared with the morphology of capillary networks observed in in vivo experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson (1994). The Molecular Biology of the Cell, 3rd edn, New York: Garland Publishing.

    Google Scholar 

  • Albini, A., G. Allavena, A. Melchiori, F. Giancotti, H. Richter, P. M. Comoglio, S. Parodi, G. R. Martin and G. Tarone (1987). Chemotaxis of 3T3 and SV3T3 cells to fibronectin is mediated through the cell-attachment site in fibronectin and fibronectin cell surface receptor. J. Cell Biol. 105, 1867–1872.

    Article  Google Scholar 

  • Alessandri, G., K. S. Raju and P. M. Gullino (1986). Interaction of gangliosides with fibronectin in the mobilization of capillary endothelium. Possible influence on the growth of metastasis. Invasion Metastasis 6, 145–165.

    Google Scholar 

  • Alt, W. (1980). Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, A. R. A. and M. A. J. Chaplain (1998). A mathematical model for capillary network formation in the absence of endothelial cell proliferation. App. Math. Lett. 11 (to appear).

  • Anderson, A. R. A., B. D. S. Sleeman, I. M. Young and B. S. Griffiths (1997). Nematode movement along a chemical gradient in a structurally heterogeneous environment: II. Theory. Fundam. Appl. Nematol. 20, 165–172.

    Google Scholar 

  • Arnold, F. and D. C. West (1991). Angiogenesis in wound healing. Pharmac. Ther. 52, 407–422.

    Article  Google Scholar 

  • Ausprunk, D. H. and J. Folkman (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res. 14, 53–65.

    Article  Google Scholar 

  • Balding, D. and D. L. S. McElwain (1985). A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73.

    Google Scholar 

  • Bell, A. D. (1986). The simulation of branching patterns in modular organisms. Phil. Trans. Roy. Soc. Lond. B313, 143–159.

    Google Scholar 

  • Bell, A. D., D. Roberts and A. Smith (1979). Branching patterns: the simulation of plant architecture. J. Theor. Biol. 81.

  • Ben-Zvi, A., M. M. Rodrigues, J. H. Krachmer and L. S. Fujikawa (1986). Immunohistochemical characterisation of extracellular matrix in the developing human cornea. Curr. Eye Res. 5, 105–117.

    Google Scholar 

  • Bikfalvi, A. (1995). Significance of angiogenesis in tumour progression and metastasis. Eur. J. Cancer 31A, 1101–1104.

    Article  Google Scholar 

  • Birdwell, C. R., A. R. Brasier and L. A. Taylor (1980). Two-dimensional peptide mapping of fibronectins from bovine aortic endothelial cells and bovine plasma. Biochem. Biophys. Res. Commun. 97, 574–581.

    Article  Google Scholar 

  • Birdwell, C. R., D. Gospodarowicz and G. L. Nicolson (1978). Identification, localisation and role of fibronectin in cultured endothelial cells. Proc. Natl. Acad. Sci. USA 75, 3273–3277.

    Article  Google Scholar 

  • Bowersox, J. C. and N. Sorgente (1982). Chemotaxis of aortic endothelial cells in response to fibronectin. Cancer Res. 42, 2547–2551.

    Google Scholar 

  • Bray, D. (1992). Cell Movements, New York: Garland Publishing.

    Google Scholar 

  • Brooks, P. C., A. M. P. Montgomery, M. Rosenfeld, R. A. Reisfled, T. Hu, G. Klier and D. A. Cheresh (1994). Integrin αυβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.

    Article  Google Scholar 

  • Bussolino, F., M. F. Di Renzo, M. Ziche, E. Bocchietto, M. Olivero, L. Naldini, G. Gaudino, L. Tamagnone, A. Coffer and P. M. Comoglio (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629–641.

    Article  Google Scholar 

  • Byrne, H. M. and M. A. J. Chaplain (1995). Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull. Math. Biol. 57, 461–486.

    Article  MATH  Google Scholar 

  • Carter, S. B. (1965). Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208, 1183–1187.

    Google Scholar 

  • Carter, S. B. (1967). Haptotaxis and the mechanism of cell motility. Nature 213, 256–260.

    Google Scholar 

  • Chaplain, M. A. J. (1995). The mathematical modelling of tumour angiogenesis and invasion Acta Biotheor. 43, 387–402.

    Article  Google Scholar 

  • Chaplain, M. A. J. (1996). Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math. Comput. Model. 23, 47–87.

    Article  MATH  Google Scholar 

  • Chaplain, M. A. J. and A. M. Stuart (1993). A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168.

    MATH  Google Scholar 

  • Clark, R. A. F., P. DellaPelle, E. Manseau, J. M. Lanigan, H. F. Dvorak and R. B. Colvin (1982). Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing. J. Invest. Dermatol. 79, 269–276.

    Article  Google Scholar 

  • Clark, R. A. F, H. F. Dvorak and R. B. Colvin (1981). Fibronectin in delayed-type hypersensitivity skin reactions: associations with vessel permeability and endothelial cell activation. J. Immunol. 126, 787–793.

    Google Scholar 

  • Clark, R. A. F, H. J. Winn, H. F. Dvorak and R. B. Colvin (1983). Fibronectin beneath reepithelializing epidermis in vivo: sources and significance. J. Invest. Dermatol. 80, 26–30.

    Article  Google Scholar 

  • Cliff, W. J. (1963). Observations on healing tissue: A combined light and electron microscopic investigation. Trans. Roy. Soc. Lond. B246, 305–325.

    Google Scholar 

  • Dallon, J. C. and H. G. Othmer (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Phil. Trans. Roy. Soc. Lond. B352, 391–417.

    Google Scholar 

  • D’Amore, P. A. and M. Klagsbrun (1984). Endothelial cell mitogens derived from retina and hypothalamus—biochemical and biological similarities J. Cell Biol. 99, 1545–1549.

    Article  Google Scholar 

  • Davis, B. (1990). Reinforced random walk. Probab. Th. Rel. Fields 84, 203–229.

    Article  MATH  Google Scholar 

  • Deno, D. C., T. M. Saba and E. P. Lewis (1983). Kinetics of endogenously labeled plasma fibronectin: Incorporation into tissues. Am. J. Physiol. 245, R564–R575.

    Google Scholar 

  • Düchting, W. (1990a). Tumor growth simulation. Comput. Graph. 14, 505–508.

    Article  Google Scholar 

  • Düchting, W. (1990b). Computer simulation in cancer research, in Advanced Simulation in Biomedicine, D. P. F. Möller (Ed.), pp. 117–139. New York: Springer-Verlag.

    Google Scholar 

  • Düchting, W. (1992). Simulation of malignant cell growth, in Fractal Geometry and Computer Graphics, J. L. Encarnção, H.-O. Peitgen, G. Sakas and G. Englert (Eds), pp. 135–143. New York: Springer-Verlag.

    Google Scholar 

  • Düchting, W., W. Ulmer and T. Ginsberg (1996). Cancer: A challenge for control theory and computer modelling. Eur. J. Cancer 32A, 1283–1292.

    Article  Google Scholar 

  • Duh, E. J., G. L. King and L. P. Aiello (1997). Identification of a VEGF receptor (KDR/FLK) promoter element which binds an endothelial cell-specific protein conferring endothelial selective expression. Invest. Opthamol. Vis. Sci. 38, 1124–1125.

    Google Scholar 

  • Dumont, D. J., G. Gradwohl, G. H. Fong, M. C. Puri, M. Gertsenstein, A. Auerbach and M. L. Breitman (1994). Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, TEK, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8, 1897–1909.

    Google Scholar 

  • Edelstein-Keshet, L. and G. B Ermentrout (1989). Models for branching networks in two dimensions. SIAM J. Appl. Math. 49, 1136–1157.

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis, L. E. and I. J. Fidler (1995). Angiogenesis and breast cancer metastasis. Lancet 346, 388–389.

    Article  Google Scholar 

  • Ermentrout, G. B. and L. Edelstein-Keshet (1993). Cellular automata approaches to biological modelling. J. Theor. Biol. 160, 97–133.

    Article  Google Scholar 

  • Folkman, J. (1985). Tumor angiogenesis. Adv. Cancer Res. 43, 175–203.

    Article  Google Scholar 

  • Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 21–31.

    Article  Google Scholar 

  • Folkman, J. and H. Brem (1992). Angiogenesis and inflammation, in Inflammation: Basic Principles and Clinical Correlates, J. I. Gallin, I. M. Goldstein and R. Snyderman (Eds), 2nd edn, New York: Raven Press.

    Google Scholar 

  • Folkman, J. and C. Haudenschild (1980). Angiogenesis in vitro. Nature 288, 551–556.

    Article  Google Scholar 

  • Folkman, J. and M. Klagsbrun (1987). Angiogenic factors. Science 235, 442–447.

    Google Scholar 

  • Fong, G. H., J. Rossant, M. Gertsenstein and M. L. Breitman (1995). Role of the FLT-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70.

    Article  Google Scholar 

  • Gasparini, G. (1995). Tumour angiogenesis as a prognostic assay for invasive ductal breast-carcinoma. J. Natl. Cancer Inst. 87, 1799–1801.

    Google Scholar 

  • Gasparini, G. and A. L. Harris (1995). Clinical importance of the determination of tumour angiogenesis in breast-cancer—much more than a new prognostic tool. J. Clin. Oncol. 13, 765–782.

    Google Scholar 

  • Gimbrone, M. A., R. S. Cotran, S. B. Leapman and J. Folkman (1974). Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natln. Cancer Inst. 52, 413–427.

    Google Scholar 

  • Goodman, S. L. and D. Newgreen (1985). Do cells show an inverse locomotory response to fibronectin and laminin substrates? EMBO J. 4, 2769–2771.

    Google Scholar 

  • Gospodarowicz, D., J. Cheng, G. M. Lui, A. Baird and P. Bohlen (1984). Isolation of brain fibroblast growth-factor by heparin-sepharose affinity-chromatography—identity with pituitary fibroblast growth-factor. Proc. Natl. Acad. Sci. USA 81, 6963–6967.

    Article  Google Scholar 

  • Gottlieb, M. E. (1990). Modelling blood vessels: a deterministic method with fractal structure based on physiological rules, in Proc. 12th International Conference of IEEE EMBS, pp. 1386–1387. New York: IEEE Press.

    Google Scholar 

  • Gottlieb, M. E. (1991a). The VT model: a deterministic model of angiogenesis and biofractals based on physiological rules, in Proc. IEEE 17th Annual Northeast Bioengineering Conference, pp. 38–39. New York: IEEE Press.

    Google Scholar 

  • Gottlieb, M. E. (1991b). Vascular networks: fractal anatomies from non-linear physiologies. IEEE Eng. Med. Bio. Mag. 13, 2196–2197.

    Google Scholar 

  • Graham, C. H. and P. K. Lala (1992). Mechanisms of placental invasion of the uterus and their control. Biochem. Cell Biol. 70, 867–874.

    Article  Google Scholar 

  • Greenberg, J. H., S. Seppa, H. Seppa and A. T. Hewitt (1981). Role of collagen and fibronectin in neural crest cell adhesion and migration. Dev. Biol. 87, 259–266.

    Article  Google Scholar 

  • Hanahan, D. (1997). Signaling vascular morphogenesis and maintenance. Science 227, 48–50.

    Article  Google Scholar 

  • Harris, A. L. (1997). Antiangiogenesis for cancer therapy. Lancet 349(suppl. II), 13–15.

    Article  Google Scholar 

  • Harris, A. L., S. Fox, R. Bicknell, R. Leek and K. Gatter (1994). Tumour angiogenesis in breast-cancer—prognostic factor and therapeutic target. J. Cellular Biochem. S18D SID, 225.

    Google Scholar 

  • Harris, A. L., H. T. Zhang, A. Moghaddam, S. Fox, P. Scott, A. Pattison, K. Gatter, I. Stratford and R. Bicknell (1996). Breast cancer angiogenesis—new approaches to therapy via anti-angiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res. Treat. 38, 97–108.

    Article  Google Scholar 

  • Hatva, E., A. Kaipainen, P. Mentula, J. Jaaskelainen, A. Paetau, M. Haltia and K. Alitalo (1995). Expression of endothelial cell-specific receptor tyrosine kinases and growth-factors in human brain-tumors. Am. J. Pathol. 146, 368–378.

    Google Scholar 

  • Herblin, W. F. and J. L. Gross (1994). Inhibition of angiogenesis as a strategy for tumour-growth control. Mol. Chem. Neuropath. 21, 329–336.

    Google Scholar 

  • Hewett, P. W. and J. C. Murray (1996). Coexpression of FLT-1, FLT-4 and KDR in freshly isolated and cultured human endothelial-cells. Biochem. Biophys. Res. Commun. 221, 697–702.

    Article  Google Scholar 

  • Höfer, T., J. A. Sherratt and P. K. Maini (1995). Cellular pattern formation during Dictyostelium aggregation. Physica D85, 425–444.

    Google Scholar 

  • Hynes, R. O. (1990). Fibronectins, Springer-Verlag: New York.

    Google Scholar 

  • Indermitte, C., Th. M. Liebling and H. Clémonçon (1994). Culture analysis and external interaction models of mycelial growth. Bull. Math. Biol. 56, 633–664.

    Article  MATH  Google Scholar 

  • Jaffee, E. A. and D. F. Mosher (1978). Synthesis of fibronectin by cultured endothelial cells. J. Exp. Med. 147, 1779–1791.

    Article  Google Scholar 

  • Johansson, S., S. Gustafson and H. Pertoft (1987). Identification of a fibronectin receptor specific for rat liver endothelial cells. Exp. Cell Res. 172, 425–431.

    Article  Google Scholar 

  • Kiani, M. and A. Hudetz (1991). Computer simulation of growth of anastomosing microvascular networks. J. Theor. Biol. 150, 547–560.

    Google Scholar 

  • Knighton, D. M., T. K. Hunt, H. Scheuenstuhl and B. J. Halliday (1983). Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221, 1283–1285.

    Google Scholar 

  • Knighton, D. M., I. A. Silver and T. K. Hunt (1981). Regulation of wound-healing angiogenesis—effect of oxygen gradients and inspired oxygen concentration. Surgery 90, 262–270.

    Google Scholar 

  • Kohno, T., N. Sorgente, T. Ishibashi, R. Goodnight and S. J. Ryan (1987). Immunofluorescent studies of fibronectin and laminin in the human eye. Invest. Opthamol. Vis. Sci. 28, 506–514.

    Google Scholar 

  • Kohno, T., N. Sorgente, R. Patterson and S. J. Ryan (1983). Fibronectin and laminin distribution in bovine eye. Jpn. J. Opthamol. 27, 496–505.

    Google Scholar 

  • Lacovara, J., E. B. Cramer and J. P. Quigley (1984). Fibronectin enhancement of directed migration of B16 melanoma cells. Cancer Res. 44, 1657–1663.

    Google Scholar 

  • Landini, G. and G. Misson (1993). Simulation of corneal neo-vascularization by inverted diffusion limited aggregation. Invest. Opthamol. Visual Sci. 34, 1872–1875.

    Google Scholar 

  • Lapidus, I. R. and R. Schiller (1976). Model for the chemotactic response of a bacterial population. Biophys. J. 16, 779–789.

    Google Scholar 

  • Lauffenburger, D., R. Aris and C. R. Kennedy (1984). Travelling bands of chemotactic bacteria in the context of population growth. Bull. Math. Biol. 46, 19–40.

    Article  MATH  Google Scholar 

  • Lewis, C. E., R. Leek, A. Harris and J. O. D. McGee (1995). Cytokine regulation of angiogenesis in breast-cancer—the role of tumour-associated macrophages. J. Leukocyte Biol. 57, 747–751.

    Google Scholar 

  • Lewis, J., J. M. W. Slack and L. Wolpert (1977). Thresholds in development. J. Theor. Biol. 65, 579–590.

    Article  Google Scholar 

  • Liotta, L. A., C. N. Rao and S. H. Barsky (1983). Tumour invasion and the extracellular matrix. Lab. Invest. 49, 636–649.

    Google Scholar 

  • Liotta, L. A., G. M. Saidel and J. Kleinerman (1977). Diffusion model of tumor vascularization. Bull. Math. Biol. 39, 117–128.

    Article  Google Scholar 

  • Lobb, R. R. and J. W. Fett (1984). Purification of two distinct growth-factors from bovine neural tissue by heparin affinity-chromatography. Biochemistry 23, 6295–6299.

    Article  Google Scholar 

  • McCarthy, J. B. and L. T. Furcht (1984). Laminin and fibronectin promote the directed migration of B16 melanoma cells in vitro. J. Cell Biol. 98, 1474–1480.

    Article  Google Scholar 

  • Macarak, E. J., E. Kirby, T. Kirk and N. A. Kefalides (1978). Synthesis of cold-insoluble globulin cultured by calf endothelial cells. Proc. Natl. Acad. Sci. USA 75, 2621–2625.

    Article  Google Scholar 

  • Maciag, T., T. Mehlman, R. Friesel and A. B. Schreiber (1984). Heparin binds endothelial cell-growth factor, the principal endothelial cell mitogen in bovine brain. Science 225, 932–935.

    Google Scholar 

  • Madri, J. A. and B. M. Pratt (1986). Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34, 85–91.

    Google Scholar 

  • Mandriota, S. J., G. Seghezzi, J. D. Vassalli, N. Ferrara, S. Wasi, R. Mazzieri, P. Mignatti and M. S. Pepper (1995). Vascular endothelial growth-factor increases urokinase receptor expression in vascular endothelial-cells. J. Biol. Chem. 270, 9709–9716.

    Article  Google Scholar 

  • Meinhardt, H. (1976). Morphogenesis of lines and nets. Differentiation 6, 117–123.

    Google Scholar 

  • Meinhardt, H. (1982). Models of Biological Pattern Formation, London: Academic Press.

    Google Scholar 

  • Millauer, B., Wizigman-Voos, H. Schnürch, R. Martinez, N. P. H. Müller, W. Risau and A. Ullrich (1993). High-affinity VEGF binding and developmental expression suggest FLK-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846.

    Article  Google Scholar 

  • Mitchell, A. R. and D. F. Griffiths (1980). The Finite Difference Method in Partial Differential Equations, Chichester: Wiley.

    MATH  Google Scholar 

  • Monaghan, P., M. J. Warburton, N. Perusinghe and P. S. Rutland (1983). Topographical arrangement of basement membrane proteins in lactating rat mammary gland: comparison of the distribution of Type IV collagen, laminin, fibronectin and Thy-1 at the ultrasructural level. Proc. Natl. Acad. Sci. 80, 3344–3348.

    Article  Google Scholar 

  • Muthukkaruppan, V. R., L. Kubai and R. Auerbach (1982). Tumor-induced neovascularization in the mouse eye. J. Natl. Cancer Inst. 69, 699–705.

    Google Scholar 

  • Nekka, F., S. Kyriacos, C. Kerrigan and L. Cartilier (1996). A model of growing vascular structures. Bull. Math. Biol. 58, 409–424.

    Article  MATH  Google Scholar 

  • Norton, J. A. (1995). Tumor angiogenesis: the future is now. Ann. Surg. 222, 693–694.

    Article  Google Scholar 

  • Oh, E., M. Pierschbacher and E. Ruoslahti (1981). Deposition of plasma fibronectin in tissues. Proc. Natl. Acad. Sci. USA 78, 3218–3221.

    Article  Google Scholar 

  • Olsen, L., J. A. Sherratt, P. K. Maini and F. Arnold (1997). A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol. 14, 261–281.

    MATH  Google Scholar 

  • O’Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. Helene Sage and J. Folkman (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    Article  Google Scholar 

  • Orme, M. E. and M. A. J. Chaplain (1996). A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J. Math. App. Med. and Biol. 13, 73–98.

    MATH  Google Scholar 

  • Orme, M. E. and M. A. J. Chaplain (1997). Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. Math. App. Med. and Biol. 14, 189–205.

    MATH  Google Scholar 

  • Ortega, N., D. Dossantos and J. Plouet (1996). Activation of the VEGF receptor FLT-1 mediates corneal endothelial-cell migration permeability. Invest. Optham. Vis. Sci. 37, 417–418.

    Google Scholar 

  • Ortega, N. and J. Plouet (1995). Constitutive expression of the VEGF receptor KDR/FLK-1 in corneal endothelial-cell mediates their proliferation. Vis. Res. 35, 4217–4218.

    Google Scholar 

  • Othmer, H. and A. Stevens (1997). Aggregation, blowup and collapse: The ABCs of taxis and reinforced random walks. SIAM J. Appl. Math. 57 1044–1081.

    Article  MathSciNet  MATH  Google Scholar 

  • Paku, S. and N. Paweletz (1991). First steps of tumor-related angiogenesis. Lab. Invest. 65, 334–346.

    Google Scholar 

  • Patterson, C., M. A. Perrella, W. O. Endege, M. Yoshizumi, M. E. Lee and E. Haber (1996). Down-regulation of vascular endothelial growth-factor receptors by tumor-necrosis-factor-alpha in cultured human vascular endothelial-cells. J. Clin. Invest. 98, 490–496.

    Article  Google Scholar 

  • Paweletz, N. and M. Knierim (1989). Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242.

    Google Scholar 

  • Pettet, G., M. A. J. Chaplain, D. L. S. McElwain and H. M. Byrne (1996). On the role of angiogenesis in wound healing. Proc. Roy. Soc. Lond. B263, 1487–1493.

    Google Scholar 

  • Polverini, P. J., R. S. Cotran, M. A. Gimbrone Jr. and E. R. Unanue (1977). Activated macrophages induce vascular proliferation. Nature 269, 804–806.

    Article  Google Scholar 

  • Prusinkiewicz, P. and A. Lindenmayer (1990). The Algorithmic Beauty of Plants, New York: Springer-Verlag.

    MATH  Google Scholar 

  • Quigley, J. P., J. Lacovara and E. B. Cramer (1983). The directed migration of B-16 melanoma-cells in response to a haptotactic chemotactic gradient of fibronectin. J. Cell Biol. 97, A450–451.

    Google Scholar 

  • Relf, M., S. Lejeune, P. A. E. Scott, S. Fox, K. Smith, R. Leek, A. Mogaddam, R. Whitehouse, R. Bicknell and A. L. Harris (1997). Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumour growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963–969.

    Google Scholar 

  • Rieder, H., G. Ramadori, H. P. Dienes and K. H. Meyer zum Buschenfelde (1987). Sinusoidal endothelial cells from guinea pig liver synthesize and secrete cellular fibronectin in vitro. Hepatology 7, 856–864.

    Google Scholar 

  • Rocco, M., E. Infusini, M. G. Daga, L. Gogioso and C. Cuniberti (1987). Models of fibronectin. EMBO J. 6, 2343–2349.

    Google Scholar 

  • Rupnick, M. A., C. L. Stokes, S. K. Williams and D. A. Lauffenburger (1988). Quantitative analysis of human microvessel endothelial cells using a linear under-agarose assay. Lab. Invest. 59, 363–372.

    Google Scholar 

  • Sato, T. N., Y. Tozawa, U. Deutsch, K. Wolburgbuchholz, Y. Fujiwara, M. Gendronmaguire, T. Gridley, H. Wolburg, W. Risau and Y. Qin (1995). Distinct roles of the receptor tyrosine kinases TIE-1 and TIE-2 in blood-vessel formation. Nature 376, 70–74.

    Article  Google Scholar 

  • Sawada, H., H. Furthmayr, H. Konomi and Y. Nagai (1987). Immunoelectronmicroscopic localization of extracellular matrix components produced by bovine corneal endothelial cells in vitro. Exp. Cell Res. 171, 94–109.

    Article  Google Scholar 

  • Schoefl, G. I. (1963). Studies on inflammation III. Growing capillaries: Their structure and permeability. Virchows Arch. Pathol. Anat. 337, 97–141.

    Article  Google Scholar 

  • Schor, S. L., A. M. Schor and G. W. Brazill (1981). The effects of fibronectin on the migration of human foreskin fibroblasts and syrian hamster melanoma cells into three-dimensional gels of lattice collagen fibres. J. Cell Sci. 48, 301–314.

    Google Scholar 

  • Sherratt, J. A. (1994). Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approximation to a detailed model. Bull. Math. Biol. 56, 129–146.

    Article  MATH  Google Scholar 

  • Sherratt, J. A. and J. D. Murray (1990). Models of epidermal wound healing. Proc. Roy. Soc. Lond. B241, 29–36.

    Google Scholar 

  • Sherratt, J. A., E. H. Sage and J. D. Murray (1993). Chemical control of eukaryotic cell movement: a new model. J. Theor. Biol. 162, 23–40.

    Article  Google Scholar 

  • Sholley, M. M., G. P. Ferguson, H. R. Seibel, J. L. Montour and J. D. Wilson (1984). Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51, 624–634.

    Google Scholar 

  • Sramek, S. J., I. H. Wallow, C. Bindley and G. Sterken (1987). Fibronectin distribution in the rat eye. An immunohistochemical study. Invest. Opthamol. Vis. Sci. 28, 500–505.

    Google Scholar 

  • Stokes, C. L. and D. A. Lauffenburger (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403.

    Google Scholar 

  • Stokes, C. L., M. A. Rupnick, S. K. Williams and D. A. Lauffenburger (1990). Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab. Invest. 63, 657–668.

    Google Scholar 

  • Stokes, C. L., D. A. Lauffenburger and S. K. Williams (1991). Migration of individual microvessel endothelial cells: stochastic model and parameter measurement J. Cell Sci. 99, 419–430.

    Google Scholar 

  • Sullivan, R. and M. Klagsbrun (1985). Purification of cartilage-derived growth-factor by heparin affinity-chromatography. J. Biol. Chem. 260, 2399–2403.

    Google Scholar 

  • Terranova, V. P., R. Diflorio, R. M. Lyall, S. Hic, R. Friesel and T. Maciag (1985). Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell Biol. 101, 2330–2334.

    Article  Google Scholar 

  • Vlodavsky, I., L. K. Johnson, G. Greenburg and D. Gospodarowicz (1979). Vascular endothelial cells maintained in the absence of fibroblast growth factor undergo structural and functional alterations that are incompatible with their in vivo differentiated properties. J. Cell Biol. 83, 468–486.

    Article  Google Scholar 

  • Warren, B. A. (1966). The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab. Invest. 15, 464–473.

    Google Scholar 

  • Weimar, J. R., J. J. Tyson and L. T. Watson (1992a). Diffusion and wave-propagation in cellular automaton models of excitable media. Physica D55, 309–327.

    MathSciNet  Google Scholar 

  • Weimar, J. R., J. J. Tyson and L. T. Watson (1992b). 3rd generation cellular automaton for modelling excitable media. Physica D55, 327–339.

    Google Scholar 

  • Williams, E. C., P. A. Janmey, J. D. Ferry and D. F. Mosher (1982). Conformational states of fibronectin. Effects of pH, ionic strength and collagen-binding. J. Biol. Chem. 257, 14973–14978.

    Google Scholar 

  • Williams, S. K. (1987). Isolation and culture of microvessel and large-vessel endothelial cells; their use in transport and clinical studies, in Microvascular Perfusion and Transport in Health and Disease, P. McDonagh (Ed.), pp. 204–245. Basel: Karger.

    Google Scholar 

  • Wolpert, L. (1981). Positional information and pattern formation. Phil. Trans. Roy. Soc. Lond. B295, 441–450.

    Google Scholar 

  • Woodley, D. T., P. M. Bachmann and E. J. O’Keefe (1988). Laminin inhibits human keratinocyte migration. J. Cell Physiol. 136, 140–146.

    Article  Google Scholar 

  • Woodward, D. E., R. Tyson, M. R. Myerscough, J. D. Murray, E. O. Budrene and H. C. Berg (1995). Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68, 2181–2189.

    Article  Google Scholar 

  • Yamada, K. M. and K. Olden (1978). Fibronectin-adhesive glycoproteins of cell surface and blood. Nature 275, 179–184.

    Article  Google Scholar 

  • Zawicki, D. F., R. K. Jain, G. W. Schmid-Schoenbein and S. Chien (1981). Dynamics of neovascularization in normal tissue. Microvasc. Res. 21, 27–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, A.R.A., Chaplain, M.A.J. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998). https://doi.org/10.1006/bulm.1998.0042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1998.0042

Keywords

Navigation