Skip to main content

Advertisement

Log in

Models of infectious diseases in spatially heterogeneous environments

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Most models of dynamics of infectious diseases have assumed homogeneous mixing in the host population. However, it is increasingly recognized that heterogeneity can arise through many processes. It is then important to consider the existence of subpopulations of hosts, and that the contact rate within subpopulations is different than that between subpopulations. We study models with hosts distributed in subpopulations as a consequence of spatial partitioning. Two types of models are considered. In the first one there is direct transmission. The second one is a model of dynamics of a mosquito-borne disease, with indirect transmission, and applicable to malaria. The contact between subpopulations is achieved through the visits of hosts. Two types of visit are considered: a first one in which the visit time is independent of the distance travelled, and a second one in which visit time decreases with distance. There are two types of spatial arrangement: one dimensional, and two dimensional. Conditions for the establishment of the disease are obtained. Results indicate that the disease becomes established with greater difficulty when the degree of spatial partition increases, and when visit time decreases. In addition, when visit time decreases with distance, the establishment of the disease is more difficult when the spatial arrangement is one dimensional than when it is two dimensional. The results indicate the importance of knowing the spatial distribution and mobility patterns to understand the dynamics of infectious diseases. The consequences of these results for the design of public health policies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M. and R. M. May (1992). Infectious Diseases of Humans, Oxford: Oxford University Press.

    Google Scholar 

  • Andreasen, V. and F. B. Christiansen (1989). Persistence of an infectious disease in a subdivided population. Math. Biosci. 96, 239–253.

    Article  MathSciNet  Google Scholar 

  • Aron, J. L. and R. M. May (1982). The population dynamics of malaria, in Population Dynamics of Infectious Diseases: Theory and Applications, R. M. Anderson (Ed.), London: Chapman & Hall, pp. 139–179.

    Google Scholar 

  • Bailey, N. T. J. (1982). The Biomathematics of Malaria, London: Charles Griffin.

    Google Scholar 

  • Ball, F. (1999). Stochastic and deterministic models for SIS epidemics among a population partitioned into households. Math. Biosci. 156, 41–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Bascompté, J. and R. V. Sole (1998). Modelling Spatiotemporal Dynamics in Ecology, New York: Springer.

    Google Scholar 

  • Becker, N. G., A. Bahrampour and K. Dietz (1995). Threshold parameters for epidemics in different community settings. Math. Biosci. 129, 189–208.

    Article  Google Scholar 

  • Becker, N. G. and K. Dietz (1995). The effect of household distribution on transmission and control of highly infectious diseases. Math. Biosci. 127, 207–219.

    Article  Google Scholar 

  • Becker, N. G. and R. Hall (1996). Immunization levels for preventing epidemics in a community of households made up of individuals of various types. Math. Biosci. 132, 205–216.

    Article  Google Scholar 

  • Becker, N. G. and D. N. Starczak (1997). Optimal vaccination strategies for a community of households. Math. Biosci. 139, 117–132.

    Article  Google Scholar 

  • Begon, M., J. L. Harper and C. R. Townsend (1996). Ecology, Oxford: Blackwell.

    Google Scholar 

  • Berlin, T. H. and M. Kac (1952). The spherical model of a ferromagnet. Phys. Rev. 86, 821–835.

    Article  MathSciNet  Google Scholar 

  • Collins, F. H. and S. M. Paskewitz (1995). Malaria: current and future prospects. Ann. Rev. Entomol. 40, 195–219.

    Article  Google Scholar 

  • De Jong, M. C. M., O. Diekmann and J. A. P. Heesterbeck (1994). The computation of R 0 for discrete-time epidemic models with dynamic heterogeneity. Math. Biosci. 119, 97–114.

    Article  Google Scholar 

  • Diekmann, O., J. A. P. Hesterbeck and J. A. J. Metz (1990). On the definition and the computation of the basic reproduction rate ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382.

    Article  MathSciNet  Google Scholar 

  • Dietz, K. (1988). Mathematical models for transmission and control of malaria, in Principles and Practice of Malariology, W. Wernsdorfer and Y. McGregor (Eds), Edinburgh: Churchill Livingstone, pp. 1091–1133.

    Google Scholar 

  • Dye, C. and G. Hasibeder (1986). Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans. R. Soc. Trop. Med. Hyg. 80, 69–77.

    Article  Google Scholar 

  • Gilpin, M. and I. Hanski (Eds) (1991). Metapopulation Dynamics: Empirical and Theoretical Investigations, New York: Academic Press.

    Google Scholar 

  • Gratz, N. G. (1999). Emerging and resurging vector-borne diseases. Ann. Rev. Entomol. 44, 51–75.

    Article  Google Scholar 

  • Grenfell, B. T. and A. P. Dobson (Eds) (1995). Ecology of Infectious Diseases in Natural Populations, Cambridge: Cambridge University Press.

    Google Scholar 

  • Grenfell, B. T. and J. Harwood (1997). (Meta)populations dynamics of infectious diseases. Trends Ecol. Evol. 12, 395–399.

    Article  Google Scholar 

  • Hanski, I. (1999). Metapopulation Ecology, Oxford: Oxford University Press.

    Google Scholar 

  • Hanski, I. and M. E. Gilpin (1997). Metapopulation Biology. Ecology, Genetics, and Evolution, New York: Academic Press.

    Google Scholar 

  • Hasibeder, G. and C. Dye (1988). Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theor. Popul. Biol. 33, 31–53.

    Article  MathSciNet  Google Scholar 

  • Hess, G. (1996). Disease in metapopulation models: implications for conservation. Ecology 77, 1617–1632.

    Article  Google Scholar 

  • Hethcote, H. W. (1978). An immunization model for a heterogeneous population. Theor. Popul. Biol. 14, 338–349.

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H. W. and H. R. Thieme (1985). Stability of the endemic equilibrium in epidemic models with subpopulations. Math. Biosci. 75, 205–277.

    Article  MathSciNet  Google Scholar 

  • Hethcote, H. W. and J. W. Van Ark (1987). Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs. Math. Biosci. 84, 85–118.

    Article  MathSciNet  Google Scholar 

  • Lajmanovich, A. and J. A. Yorke (1976). A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28, 221–236.

    Article  MathSciNet  Google Scholar 

  • Levins, R., T. Awerbuch, U. Brinkman, I. Eckardt, P. Epstein, N. Makhoul, C. Albuquerque de Posas, C. Puccia, A. Spielman and M. Wilson (1994). The emergence of new diseases. Am. Sci. 82, 52–60.

    Google Scholar 

  • Longini, I. M., Jr (1988). A mathematical model for predicting the geographical spread of new infectious agents. Math. Biosci. 90, 367–383.

    Article  MATH  MathSciNet  Google Scholar 

  • Longini, I. M., Jr, P. E. M. Fine and S. B. Thacker (1986). Predicting the global spread of new infectious agents. Am. J. Epidemiol. 123, 383–391.

    Google Scholar 

  • Macdonald, G. (1957). The Epidemiology and Control of Malaria, London: Oxford University Press.

    Google Scholar 

  • May, R. M. (1974). Stability and Complexity in Model Ecosystems. Monographs in Population Biology 6, Princeton: Princeton University Press.

    Google Scholar 

  • May, R. M. and R. M. Anderson (1984). Spatial Heterogeneity and the design of immunization programs. Math. Biosci. 72, 83–111.

    Article  MathSciNet  Google Scholar 

  • Nold, A. (1980). Heterogeneity in disease-tansmission modelling. Math. Biosci. 52, 227–240.

    Article  MATH  MathSciNet  Google Scholar 

  • Post, W. M., D. L. DeAngelis and C. C. Travis (1983). Endemic disease in environments with spatially heterogeneous host populations. Math. Biosci. 63, 289–302.

    Article  MathSciNet  Google Scholar 

  • Prothero, M. (1991). Resettlement and health: Amazonian and tropical perspective, in A Desordem Ecologico na Amazonia, L. E. Aragon (Ed.), Belem: Editora Universitaria, pp. 161–182.

    Google Scholar 

  • Ross, R. (1911). The Prevention of Malaria, London: Murray.

    Google Scholar 

  • Rubio-Palis, Y., R. A. Wirtz and C. F. Curtis (1992). Malaria entomological inoculation rates in western Venezuela. Acta Tropica 52, 167–174.

    Article  Google Scholar 

  • Rushton, S. and A. J. Mautner (1955). The deterministic model of a simple epidemic for more than one community. Biometrika 42, 126–132.

    Article  MathSciNet  Google Scholar 

  • Rvachev, L. A. and I. M. Longini, Jr (1985). A mathematical model for the global spread of influenza. Math. Biosci. 75, 3–22.

    Article  MathSciNet  Google Scholar 

  • Sandia-Mago, A. (1994). Venezuela: malaria y movilidad humana estacional de las comunidades indígenas del río Riecito del estado Apure. Fermentum 3/4, 102–123.

    Google Scholar 

  • Sattenspiel, L. and K. Dietz (1995). A structured epidemic model incorporating geographic mobility among regions. Math. Biosci. 128, 71–91.

    Article  Google Scholar 

  • Sattenspiel, L. and D. A. Herring (1998). Structured epidemic models and the spread of influenza in the Central Canada Subarctic. Hum. Biol. 70, 91–115.

    Google Scholar 

  • Sattenspiel, L., A. Mobarry and D. A. Herring (2000). Modeling the influence of settlement structure on the spread of influenza among communities. Am. J. Hum. Biol. 12, 736–748.

    Article  Google Scholar 

  • Sattenspiel, L. and C. P. Simon (1988). The spread and persistence of infectious diseases in structured populations. Math. Biosci. 90, 341–366.

    Article  MathSciNet  Google Scholar 

  • Searle, S. R. (1982). Matrix Algebra Useful for Statistics, New York: Wiley.

    Google Scholar 

  • Sifontes, R. (1985). VenezuelaLa, in Escuela de Malariología y el Saneamiento Ambiental y la Accíon Sanitaria en las Repúblicas Latinoamericanas, Caracas: Fundación Bicentenario de Simón Bolívar, pp. 519–559.

    Google Scholar 

  • Thrall, P. H. and J. J. Burdon (1997). Host-pathogen dynamics in a metapopulation context: the ecological and evolutionary consequences of being spatial. J. Ecol. 85, 743–753.

    Google Scholar 

  • Tilman, D. and P. Kareiva (Eds) (1997). Spatial Ecoloy. Monographs in Population Biology, 30, Princeton: Princeton University Press.

    Google Scholar 

  • Torres-Sorando, L. J. (1998). Modelos Espacio-temporales y Estudio del Comportamiento Dinámico de la Incidencia de Malaria en Venezuela, PhD thesis, Universidad Central de Venezuela, Caracas.

    Google Scholar 

  • Torres-Sorando, L. J. and D. J. Rodríguez (1997). Models of spatio-temporal dynamics in malaria. Ecol. Modelling 104, 231–240.

    Article  Google Scholar 

  • Travis, C. C. and S. M. Lenhart (1987). Eradication of infectious diseases in heterogeneous populations. Math. Biosci. 83, 191–198.

    Article  MathSciNet  Google Scholar 

  • Watson, R. K. (1972). On an epidemic in a stratified population. J. Appl. Prob. 9, 659–666.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego J. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, D.J., Torres-Sorando, L. Models of infectious diseases in spatially heterogeneous environments. Bull. Math. Biol. 63, 547–571 (2001). https://doi.org/10.1006/bulm.2001.0231

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0231

Keywords

Navigation