Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T17:01:23.541Z Has data issue: false hasContentIssue false

Duration and Structure of the Past Four Interglaciations

Published online by Cambridge University Press:  20 January 2017

Isaac J. Winograd
Affiliation:
US Geological Survey, 432 National Center, Reston, Virginia, 20192
Jurate M. Landwehr
Affiliation:
US Geological Survey, 432 National Center, Reston, Virginia, 20192
Kenneth R. Ludwig
Affiliation:
Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California, 94709
Tyler B. Coplen
Affiliation:
US Geological Survey, 432 National Center, Reston, Virginia, 20192
Alan C. Riggs
Affiliation:
USGS, Denver Federal Center, MS 413, Lakewood, Colorado, 80225

Abstract

Reanalysis and additional dating of the Devils Hole δ18O paleotemperature record confirm that the last interglaciation in the Great Basin (the continental analog of marine isotopic substage 5e) lasted ∼22,000 yr, consistent with the Vostok paleotemperature record which suggests a duration of ∼19,000 yr for this event in Antarctica. The three preceding interglaciations in the Devils Hole record (analogs of marine isotopic substages 7e, 9c, and 11c) range from 20,000 to 26,000 yr in duration. A ∼20,000-yr duration for the last interglaciation is consistent with TIMS uranium-series dated sea-level high stands. Thus, the widely held view that interglaciations were of 11,000- to 13,000-yr duration and constituted only about 10% of mid-to-late Pleistocene climatic cycles needs reexamination. The warmest portion of each interglaciation in the Devils Hole time series is marked by a δ18O plateau, signifying apparent climatic stability for periods of 10,000- to 15,000-yr duration.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard,, E., Hamelin,, B., Arnold,, M., Montaggioni,, L., Cabioch,, G., Faure,, G. and Rougerie, F. (1996a). Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241244.CrossRefGoogle Scholar
Bard,, E., Jouannie,, C., Hamelin,, B., Pirazzoli,, P., Arnold,, M., Faure,, G. and Sumosusastro, P. (1996b). Pleistocene sea levels and tectonic uplift based on dating of corals from Sumba Island, Indonesia. Geophysical Research Letters 23, 14731476.CrossRefGoogle Scholar
Bassinot, F. C., Labeyrie, L. D., Vincent,, E., Quidelleur,, X., Shackleton, N. J. and Lancelot, Y. (1994). The astronomical theory of climate and the age of the Bruhnes–Matuyama magnetic reversal. Earth and Planetary Science Letters 126, 91108.CrossRefGoogle Scholar
Berger,, A. and Loutre, M. F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Bender,, M., Sowers,, T., Dickson,, M., Orchado,, J., Grootes,, P., Mayewski, P. A. and Meese, D. A. (1994). Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, 663666.CrossRefGoogle Scholar
Bowen, D. Q. (1978). “Quaternary Geology,” pp. 99108. Pergamon, Oxford.Google Scholar
Broecker, W. S. (1992a). Defining the boundaries of the Late-glacial isotope episodes. Quaternary Research 38, 135138.CrossRefGoogle Scholar
Broecker, W. S. (1992b). Upset for Milankovitch theory. Nature 359, 779780.CrossRefGoogle Scholar
Brusseau, M. L. (1994). Transport of reactive contaminants in heterogeneous porous media. Reviews of Geophysics 32, 285313.CrossRefGoogle Scholar
Chen, J. H., Curran, H. A., White,, B. and Wasserberg, G. J. (1991). Precise chronology of the last interglacial period: 234U–230Th from fossil coral reefs in the Bahamas. Geological Society of America Bulletin 103 8297.2.3.CO;2>CrossRefGoogle Scholar
Ciais,, P., Jouzel,, J., Petit, J. R., Lipenkov,, V. and White, J. W. C. (1994). Holocene temperature variations inferred from six Antarctic ice cores. Annals of Glaciology 20, 427436.CrossRefGoogle Scholar
CLIMAP Project Members (1984). The last interglacial ocean. Quaternary Research 21, 123224.CrossRefGoogle Scholar
Coplen, T. B., Winograd, I.J., Landwehr, J. M. and Riggs, A. C. (1994). 500,000-year stable carbon isotopic record from Devils Hole, Nevada. Science 263, 361365.CrossRefGoogle ScholarPubMed
Crowley, T. J. (1994). Potential reconciliation of Devils Hole and deep-sea Pleistocene chronologies. Paleoceanography 9, /1/2.CrossRefGoogle Scholar
Crowley, T. J. and North, G. R. (1991). “Paleoclimatology.” Oxford Univ. Press, New York.Google Scholar
Crowley, T. J. and Kim, K.-Y. (1994). Milankovitch forcing of the last interglacial sea level. Science 265, 15661568.CrossRefGoogle ScholarPubMed
Denton, G. H. and Hendy, C. H. (1994). Younger Dryas age advance of Franz Josef glacier in the Southern Alps of New Zealand. Science 264, 14341437.CrossRefGoogle Scholar
Dettinger, M. D., (1987). Influence of Tertiary-age extensional tectonics on present-day regional ground-water flow and discharge in southern Nevada and vicinity. Geological Society of America, Abstracts with Programs 19, 371372.Google Scholar
Domenico, P. A. and Schwartz, F. W. (1990). “Physical and Chemical Hydrogeology.“ Wiley, New York.Google Scholar
Edwards, R. L. and Gallup, C. D. (1993). Dating of the Devils Hole calcite vein. Science 259, 1626.CrossRefGoogle ScholarPubMed
Edwards, R. L., Cheng,, H., Murrell, M. T. and Goldstein, S. J. (1997). Protactinium-231 dating of carbonates by thermal ionization mass spec-trometry: Implications for Quaternary climate change. Science 276, 782.CrossRefGoogle Scholar
Emiliani, C. (1961). Cenozoic climate changes as indicated by the stratigraphy and chronology of deep-sea cores of Globigerina facies. Annals of the New York Academy of Sciences 95, 521536.CrossRefGoogle Scholar
Emiliani, C. (1993). Milankovitch theory verified. Nature 364, 583584.CrossRefGoogle Scholar
Eisenhauer,, A., Zhu, Z. R., Collins, L. B., Wyrwoll, K. H. and Eichstatter, R. (1996). “U-Series Ages of a Last Interglacial Coral from the Abrolhos Islands W. Australia, ” Sixth, V. M. Goldschmidt Conference, Heidelberg, March 31–April 4, 1996, Extended Abstracts, Vol. 1 (1) p. 158, Cambridge Publications, Cambridge, England.Google Scholar
Esat, T. M., McCulloch, M. T., Pillans,, B. and Chappell, J. (1996). Record of the penultimate deglaciation at Huon Peninsula: EOS, Transactions of the American Geophysical Union 77 (46), F302.Google Scholar
Fisher, D. A., Koerner, R. M., Kuivinen,, K., Clausen, H. B., Johnsen, S. J., Steffensen, J. P., Gundestrup,, N. and Hammer, C. U. (1996). Inter-comparison of ice core δ18O and precipitation records from sites in Canada and Greenland over the last 3500 years and over the last few centuries in detail using EOF techniques. In“ Climatic Variations and Forcing Mechanisms of the Last 2000 Years” ( Jones, P. D. Bradley, R. S. and Jouzel, J. Eds.), NATO ASI Series, Vol. 141, pp. 297328. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Freeze, R. A. and Cherry, J. A. (1979). “Groundwater.” Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Gallup, C. D., Edwards, R. L. and Johnson, R. G. (1994). The timing of high sea levels over the past 200,000 years. Science 263, 796800.CrossRefGoogle ScholarPubMed
Grootes, P. M. (1993). Interpreting continental oxygen isotope records. In “Climate Change in Continental Isotopic Records” ( Swart, P. K. Lohmann, K. C. McKenzie, J. and Savin, S. Eds.), American Geophysical Union Geophysical Monograph 78, pp. 3746.Google Scholar
Herbert, T. D., Yasuda,, M. and Burnett, C. (1995). Glacial-interglacial sea-surface temperature record inferred from alkenone unsaturation indices, Site 893, Santa Barbara Basin. In “Proceedings of the Ocean Drilling Program, Scientific Results” ( Kennett, J. P. Baldauf, J. G. and Lyle, M. Eds.), pp. 257264. Ocean Drilling Program, Texas A&M Univ.Google Scholar
Imbrie, J., (1992). A good year for Milankovitch. Paleoceanography 7, 687690.CrossRefGoogle Scholar
Imbrie,, J. and Imbrie, J. Z., (1980). Modeling the climate response to orbital variations. Science 207, 943953.CrossRefGoogle Scholar
Imbrie,, J., Hays, J. D., McIntyre,, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. and Shackleton, N. G., (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In “Milankovitch and Climate” (A. Berger J. Imbrie J. Hays G. Kukla, and B. Saltzman, Eds.), Part 1, pp. 269305. Reidel, Boston.Google Scholar
Imbrie,, J., Mix, A. C. and Martinson, D. G., (1993). Milankovitch theory viewed from Devils Hole. Nature 363, 531533.CrossRefGoogle Scholar
ISO (1992). ISO 31–0, Quantities and Units, Part 0, General Principles, subclause 2.3.3. International Organization for Standardization.Google Scholar
Jouzel,, J., Barkov, N. I., Barnola, J. M., Bender,, M., Chappellaz,, J., Gen-thon,, C., Kotlyakov, V. M., Lipenkov,, V., Lorius,, C., Petit, J. R., Ray-naud,, D., Raisbeck,, G., Ritz,, C., Sowers,, T., Stievenard,, M., Yiou,, F. and Yiou, P., (1993). Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature 364, 407412.CrossRefGoogle Scholar
Kennett, J. P., (1995). Latest Quaternary benthic oxygen and carbon isotope stratigraphy: Hole 893A, Santa Barbara Basin, California. In “ Proceedings of the Ocean Drilling Program, Scientific results” (J. P. Kennett J. G. Baldauf, and M. Lyle, Eds.), pp. 318. Ocean Drilling Program, Texas A&M Univ.Google Scholar
Lorius,, C., Jouzel,, J., Ritz,, C., Merlivat,, L., Barkov, N. I., Korotkevich, Y. S. and Kotlyakov, V. M., (1985). A 150,000-year climatic record from Antarctic ice. Nature 316, 591596.CrossRefGoogle Scholar
Lowell, T. V., Heusser, C. J., Andersen, B. G., Moreno, P. I., Hauser,, A., Heusser, L. E., Schluchter,, C., Marchant, D. R. and Denton, G. H., (1995). Interhemispheric correlation of late Pleistocene glacial events. Science 269, 15411549.CrossRefGoogle Scholar
Ludwig, K. R., Simmons, K. R., Szabo, B. J., Winograd, I. J., Landwehr, J. M., Riggs, A. C. and Hoffman, R. J., (1992). Mass-spectrometric 230Th–234U–238U dating of the Devils Hole calcite vein. Science 258, 284287.CrossRefGoogle Scholar
Ludwig, K. R., Simmons, K. R., Winograd, I. J., Szabo, B. J. and Riggs, A. C., (1993a). Dating of the Devils Hole calcite vein. Science 259, 16261627.CrossRefGoogle Scholar
Ludwig, K. R., Simmons, K. R., Winograd, I. J., Szabo, B. J., Landwehr, J. M. and Riggs, A. C., (1993b). Last interglacial in Devils Hole. Nature 362, 596.CrossRefGoogle Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie,, J., Moore, T. C. Jr., and Shackleton, N. J., (1987). Age dating and the orbital theory of the ice ages: Development of a high resolution 0 to 300,000-year chronostrat-igraphy. Quaternary Research 27, 129.CrossRefGoogle Scholar
Maslin,, M. and Tzedakis, C., (1996). Sultry Last Intergacial gets sudden chill. EOS, Transactions American Geophysical Union 77 (37), 353354.CrossRefGoogle Scholar
Mayewski, P. A., Twickler, M. S., Whitlow, S. I., Meeker, L. D., Yang,, Q., Thomas,, J., Kreutz,, K., Grootes, P. M., Morse, D. L., Steig, E. J., Waddington, E. D., Saltzman, E. S., Whung, P.-Y. and Taylor, K. C., (1996). Climate change during the last deglaciation in Antarctica. Science 272, 16361638.CrossRefGoogle Scholar
Mosely-Thompson, E., (1996). Holocene climate changes recorded in an east Antarctic ice core. In “Climate Variations and Forcing Mechanisms of the Last 2,000 Years” (P. D. Jones R. S. Bradley, and J. Jouzel, Eds.), NATO ASI Series, Vol. 141, pp. 263–279, Springer-Verlag, Berlin.Google Scholar
Muhs, D. R., Ludwig, K. R., Simmons, K. R., Halley, R. B., Shinn, E. A. and Kindinger, J. L., (1994). High sea-stand recorded on the Bahamas during 110–120 ka. Geological Society of America, Abstracts with Programs 26 (7), A514515.Google Scholar
Oppo, D. W., Horowitz,, M. and Lehman, S. J., (1997). Marine evidence for reduced deep water production during Termination II followed by a relatively stable substage 5e (Eemian). Paleoceanography 12, 5163.CrossRefGoogle Scholar
Pichon, J. J., Labeyrie, L. D., Bareille,, G., Labracherie,, M., Duprat,, J. and Jouzel, J., (1992). Surface water temperature changes in the high latitudes of the Southern Hemisphere over the last glacial–interglacial cycle. Pa-leoceanography 7, 289318.Google Scholar
Riggs, A. C., Carr, W. J., Kolesar, P. T. and Hoffman, R. J., (1994). Tectonic speleogenesis of Devils Hole, Nevada, and implications for hydro-geology and the development of long, continuous paleoenvironmental records. Quaternary Research 42, 241254.CrossRefGoogle Scholar
Sarnthein,, M. and Tiedemann, R., (1990). Younger Dryas-style cooling events at glacial terminations I–VI at ODP Site 658: Associated benthic d13C anomalies constrain meltwater hypothesis. Paleoceanography 5, 10411055.CrossRefGoogle Scholar
Schrag, D. P., Hampt,, G. and Murray, D. W., (1996a). Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 19301932.CrossRefGoogle Scholar
Schrag, D. P., Hodell, D. A. and MacIntyre, K., (1996b). Oxygen isotopic composition and temperature of deep water in the North Atlantic during the last glacial maximum: Evidence from pore fluids from ODP Leg 162. EOS, Transactions of the American Geophysical Union 77 (46), F296.Google Scholar
Shackleton, N. J., (1969). The last interglacial in the marine and terrestrial records. Proceedings of the Royal Society of London B174, 135154.Google Scholar
Shackleton, N. J., (1993). Last interglacial in Devils Hole. Nature 362, 596.CrossRefGoogle Scholar
Slowey, N. C., Henderson, G. M. and Curry, W. B., (1996). Direct U-Th dating of marine sediments from the two most recent interglacial periods. Nature 383, 242244.CrossRefGoogle Scholar
Sowers,, T., Bender,, M., Labeyrie,, L., Martinson,, D., Jouzel,, J., Raynaud,, D., Pichon, J. J. and Korotkevich, Y. S., (1993). A 135,000-year Vostok-SPECMAP common temporal framework. Paleoceanography 8, 737766.CrossRefGoogle Scholar
Stirling, C. H., (1996). “High-Precision U-series Dating of Corals from Western Australia: Implications for Last Interglacial Sea-Levels.” Unpublished Ph.D. dissertation, Australian National University.Google Scholar
Stirling, C. H., Esat, T. M., McCulloch, M. T. and Lambeck, K., (1995). High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the last interglacial. Earth and Planetary Science Letters 135, 115130.CrossRefGoogle Scholar
Szabo, B. J., Ludwig, K. R., Muhs, D. R. and Simmons, K. R., (1994). Thorium-230 ages of corals and duration of last interglacial sea-level high stand on Oahu, Hawaii. Science 266, 9396.CrossRefGoogle Scholar
Thomas, J. M., (1996). “Geochemical and Isotopic Interpretation of Ground-water Flow, Geochemical Processes, and Age Dating of Groundwater in the Carbonate-rock Aquifers of the Southern Basin and Range.” Unpublished Ph.D. dissertation, University of Nevada Reno.Google Scholar
Waelbroeck,, C., Jouzel,, J., Labeyrie,, L., Lorius,, C., Labracherie,, M., Stie-venard,, M. and Barkov, N. I., (1995). A comparison of the Vostok ice deuterium record and series from Southern Ocean core MD 88–770 over the last two glacial–interglacial cycles. Climate Dynamics 12, 113123.CrossRefGoogle Scholar
Winograd, I. J. and Thordarson, W., (1975). “Hydrogeologic and Hydro-chemical Framework, South-central Great Basin, with Special Reference to the Nevada Test Site.” U.S. Geological Survey Professional Paper 712-C.Google Scholar
Winograd, I. J. and Pearson, F. J. Jr., (1976). Major carbon 14 anomaly in a regional carbonate aquifer: Possible evidence for megascale channeling, south-central Great Basin. Water Resources Research 12, 11251143.CrossRefGoogle Scholar
Winograd, I. J., Szabo, B. J., Coplen, T. B. and Riggs, A. C., (1988). A 250,000-year climatic record from Great Basin vein calcite: Implications for Milankovitch theory. Science 242, 12751280.CrossRefGoogle Scholar
Winograd, I. J., Coplen, T. B., Landwehr, J. M., Riggs, A. C., Ludwig, K. R., Szabo, B. J., Kolesar, P. T. and Revesz, K. M., (1992). Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255260.CrossRefGoogle Scholar
Winograd, I. J., Coplen, T. B., Ludwig, K. R., Landwehr, J. M. and Riggs, A. C., (1996). High resolution δ18O record from Devils Hole, Nevada, for the period 80–19ka. EOS, Transactions of the American Geophysical Union 77 (17), S169.Google Scholar
Zhu, Z. R., Wyrwoll, K. H., Collins, L. B., Chen, J. H., Wasserburg, G. J. and Eisenhauer, A., (1993). High precision U-series dating of last intergla-cial events by mass spectrometry: Houtman Abrolhos Islands, western Australia. Earth and Planetary Science Letters 118, 281293.CrossRefGoogle Scholar