Skip to main content

The Perception of Speech Under Adverse Conditions

  • Chapter
Speech Processing in the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 18))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JB (1994) How do humans process and recognize speech? IEEE Trans Speech Audio Proc 2:567–577.

    Google Scholar 

  • ANSI (1969) Methods for the calculation of the articulation index. ANSI S3.5-1969. New York: American National Standards Institute.

    Google Scholar 

  • ANSI (1997) Methods for the calculation of the articulation index. ANSI S3.5-1997. New York: American National Standards Institute.

    Google Scholar 

  • Arai T, Greenberg S (1998) Speech intelligibility in the presence of cross-channel spectral asynchrony, IEEE Int Conf Acoust Speech Signal Proc, pp. 933–936.

    Google Scholar 

  • Assmann PF (1991) Perception of back vowels: center of gravity hypothesis. Q J Exp Psychol 43A:423–448.

    Google Scholar 

  • Assmann PF (1995) The role of formant transitions in the perception of concurrent vowels. J Acoust Soc Am 97:575–584.

    CAS  PubMed  Google Scholar 

  • Assmann PF (1996) Modeling the perception of concurrent vowels: role of formant transitions. J Acoust Soc Am 100:1141–1152.

    CAS  PubMed  Google Scholar 

  • Assmann PF (1999) Fundamental frequency and the intelligibility of competing voices. Proceedings of the 14th International Congress of Phonetic Sciences, pp. 179–182.

    Google Scholar 

  • Assmann PF, Katz WF (2000) Time-varying spectral change in the vowels of children and adults. J Acoust Soc Am 108:1856–1866.

    CAS  PubMed  Google Scholar 

  • Assmann PF, Nearey TM (1986) Perception of front vowels: the role of harmonics in the first formant region. J Acoust Soc Am 81:520–534.

    Google Scholar 

  • Assmann PF, Summerfield AQ (1989) Modeling the perception of concurrent vowels: vowels with the same fundamental frequency. J Acoust Soc Am 85: 327–338.

    CAS  PubMed  Google Scholar 

  • Assmann PF, Summerfield AQ (1990) Modeling the perception of concurrent vowels: vowels with different fundamental frequencies. J Acoust Soc Am 88:680–697.

    CAS  PubMed  Google Scholar 

  • Assmann PF, Summerfield Q (1994) The contribution of waveform interactions to the perception of concurrent vowels. J Acoust Soc Am 95:471–484.

    CAS  PubMed  Google Scholar 

  • Auer ET Jr, Bernstein LE (1997) Speechreading and the structure of the lexicon: computationally modeling the effects of reduced phonetic distinctiveness on lexical uniqueness. J Acoust Soc Am 102:3704–3710.

    PubMed  Google Scholar 

  • Baer T, Moore BCJ (1993) Effects of spectral smearing on the intelligibility of sentences in noise. J Acoust Soc Am 94:1229–1241.

    Google Scholar 

  • Baer T, Moore BCJ (1994) Effects of spectral smearing on the intelligibility of sentences in the presence of interfering speech [letter]. J Acoust Soc Am 95:2277–2280.

    CAS  PubMed  Google Scholar 

  • Baer T, Moore BCJ, Gatehouse S (1993) Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: effects on intelligibility, quality, and response times. J Rehabil Res Dev 30:49–72.

    CAS  PubMed  Google Scholar 

  • Bakkum MJ, Plomp R, Pols LCW (1993) Objective analysis versus subjective assessment of vowels pronounced by native, non-native, and deaf male speakers of Dutch. J Acoust Soc Am 94:1983–1988.

    Google Scholar 

  • Bashford JA, Reiner KR, Warren RM (1992) Increasing the intelligibility of speech through multiple phonemic restorations. Percept Psychophys 51:211–217.

    PubMed  Google Scholar 

  • Beddor PS, Hawkins S (1990) The influence of spectral prominence on perceived vowel quality. J Acoust Soc Am 87:2684–2704.

    CAS  PubMed  Google Scholar 

  • Beranek LL (1947) The design of speech communication systems. Proc Inst Radio Engineers 35:880–890.

    Google Scholar 

  • Berglund B, Hassmen P, Job RF (1996) Sources and effects of low-frequency noise. J Acoust Soc Am 99:2985–3002.

    CAS  PubMed  Google Scholar 

  • Bird J, Darwin CJ (1998) Effects of a difference in fundamental frequency in separating two sentences. In: Palmer A, Rees A, Summerfield Q, Meddis R (eds) Psychophysical and physiological advances in hearing. London: Whurr.

    Google Scholar 

  • Bladon RAW (1982) Arguments against formants in the auditory representation of speech In: Carlson R, Granstrom B (eds) The Representation of Speech in the Peripheral Auditory System, Amsterdam Elsevier Biomedical Press, pp. 95–102.

    Google Scholar 

  • Bladon RAW, Lindblom B (1981) Modeling the judgement of vowel quality differences. J Acoust Soc Am 69:1414–1422.

    CAS  PubMed  Google Scholar 

  • Blauert J (1996) Spatial Hearing: The Psychophysics of Human Sound Localization, 2nd ed. Cambridge, MA: MIT Press.

    Google Scholar 

  • Blesser B (1972) Speech perception under conditions of spectral transformation. I. Phonetic characteristics. J Speech Hear Res 15:5–41.

    CAS  PubMed  Google Scholar 

  • Boothroyd A, Nittrouer S (1988) Mathematical treatment of context effects in phoneme and word recognition. J Acoust Soc Am 84:101–114.

    CAS  PubMed  Google Scholar 

  • Bradlow AR, Pisoni DB (1999). Recognition of spoken words by native and non-native listeners: talker-, listener-, and item-related factors. J Acoust Soc Am 106:2074–2085.

    CAS  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Broadbent DE (1958) Perception and Communication. Oxford: Pergamon Press.

    Google Scholar 

  • Brokx JPL, Nooteboom SG (1982) Intonation and the perception of simultaneous voices. J Phonetics 10:23–26.

    Google Scholar 

  • Bronkhorst AW (2000) The cocktail party phenomenon: a review of research on speech intelligibility in multiple-talker conditions. Acustica 86:117–128.

    Google Scholar 

  • Bronkhorst AW, Plomp R (1988) The effect of head-induced interaural time and level differences on speech intelligibility in noise. J Acoust Soc Am 83:1508–1516.

    CAS  PubMed  Google Scholar 

  • Brungart DS (2001) Informational and energetic masking effects in the perception of two simultaneous talkers. J Acoust Soc Am 109:1101–1109.

    CAS  PubMed  Google Scholar 

  • Brungart DS, Simpson BD, Ericson MA, Scott KR (2001) Informational and energetic masking effects in the perception of multiple simultaneous talkers. J Acoust Soc Am 110:2527–2538.

    CAS  PubMed  Google Scholar 

  • Buuren RA van, Festen JM, Houtgast T (1996) Peaks in the frequency response of hearing aids: evaluation of the effects on speech intelligibility and sound quality. J Speech Hear Res 39:239–250.

    PubMed  Google Scholar 

  • Buus S (1985) Release from masking caused by envelope fluctuations. J Acoust Soc Am 78:1958–1965.

    CAS  PubMed  Google Scholar 

  • Byrne D, Dillon H, Tran K, et al. (1994) An international comparison of long-term average speech spectra. J Acoust Soc Am 96:2108–2120.

    Google Scholar 

  • Carhart R (1965) Monaural and binaural discrimination against competing sentences. Int Audiol 4:5–10.

    Google Scholar 

  • Carhart R, Tillman TW, Greetis ES (1969) Perceptual masking in multiple sound background. J Acoust Soc Am 45:411–418.

    CAS  PubMed  Google Scholar 

  • Cariani PA, Delgutte B (1996a) Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J Neurophys 76:1698–1716.

    CAS  Google Scholar 

  • Cariani PA, Delgutte B (1996b) Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. J Neurophys 76:1717–1734.

    CAS  Google Scholar 

  • Carlson R, Fant G, Granstrom B (1974) Two-formant models, pitch, and vowel perception. Acustica 31:360–362.

    Google Scholar 

  • Carlson R, Granstrom B, Klatt D (1979) Vowel perception: the relative perceptual salience of selected acoustic manipulations. Speech Transmission Laboratories (Stockholm) Quarterly Progress Report SR 3–4, pp. 73–83.

    Google Scholar 

  • Carlyon RP (1989) Changes in the masked thresholds of brief tones produced by prior bursts of noise. Hear Res 41:223–236.

    CAS  PubMed  Google Scholar 

  • Carlyon RP (1994) Further evidence against an across-frequency mechanism specific to the detection of FM incoherence between resolved frequency components. J Acoust Soc Am 95:949–961.

    CAS  PubMed  Google Scholar 

  • Carney LH, Yin TCT (1988) Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. J Neurophys 60:1653–1677.

    CAS  Google Scholar 

  • Carrell TD, Opie JM (1992) The effect of amplitude comodulation on auditory object formation in sentence perception. Percept Psychophys 52:437–445.

    CAS  PubMed  Google Scholar 

  • Carterette EC, Møller A (1962) The perception of real and synthetic vowels after very sharp filtering. Speech Transmission Laboratories (Stockholm) Quarterly Progress Report SR 3, pp. 30–35.

    Google Scholar 

  • Castle WE (1964) The Effect of Narrow Band Filtering on the Perception of Certain English Vowels. The Hague: Mouton.

    Google Scholar 

  • Chalikia M, Bregman A (1989) The perceptual segregation of simultaneous auditory signals: pulse train segregation and vowel segregation. Percept Psychophys 46:487–496.

    CAS  PubMed  Google Scholar 

  • Cherry C (1953) Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am 25:975–979.

    Google Scholar 

  • Cherry C, Wiley R (1967) Speech communication in very noisy environments. Nature 214:1164.

    CAS  PubMed  Google Scholar 

  • Cheveigné A de (1997) Concurrent vowel identification. III: A neural model of harmonic interference cancellation. J Acoust Soc Am 101:2857–2865.

    Google Scholar 

  • Cheveigné A de, McAdams S, Laroche J, Rosenberg M (1995) Identification of concurrent harmonic and inharmonic vowels: a test of the theory of harmonic cancellation and enhancement. J Acoust Soc Am 97:3736–3748.

    PubMed  Google Scholar 

  • Chistovich LA (1984) Central auditory processing of peripheral vowel spectra. J Acoust Soc Am 77:789–805.

    Google Scholar 

  • Chistovich LA, Lublinskaya VV (1979) The “center of gravity” effect in vowel spectra and critical distance between the formants: psychoacoustic study of the perception of vowel-like stimuli. Hear Res 1:185–195.

    Google Scholar 

  • Ciocca V, Bregman AS (1987) Perceived continuity of gliding and steady-state tones through interrupting noise. Percept Psychophys 42:476–484.

    CAS  PubMed  Google Scholar 

  • Coker CH, Umeda N (1974) Speech as an error correcting process. Speech Communication Seminar, SCS-74, Stockholm, Aug. 1–3, pp. 349–364.

    Google Scholar 

  • Cooke MP, Ellis DPW (2001) The auditory organization of speech and other sources in listeners and computational models. Speech Commun 35:141–177.

    Google Scholar 

  • Cooke MP, Morris A, Green PD (1996) Recognising occluded speech. In: Greenberg S, Ainsworth WA (eds) Proceedings of the ESCA Workshop on the Auditory Basis of Speech Perception, pp. 297–300.

    Google Scholar 

  • Culling JE, Darwin CJ (1993a) Perceptual separation of simultaneous vowels: within and across-formant grouping by f0. J Acoust Soc Am 93:3454–3467.

    CAS  PubMed  Google Scholar 

  • Culling JE, Darwin CJ (1994) Perceptual and computational separation of simultaneous vowels: cues arising from low frequency beating. J Acoust Soc Am 95: 1559–1569.

    CAS  PubMed  Google Scholar 

  • Culling JF, Summerfield Q (1995a) Perceptual separation of concurrent speech sounds: absence of across-frequency grouping by common interaural delay. J Acoust Soc Am 98:785–797.

    CAS  PubMed  Google Scholar 

  • Culling JF, Summerfield Q (1995b) The role of frequency modulation in the perceptual segregation of concurrent vowels. J Acoust Soc Am 98:837–846.

    CAS  PubMed  Google Scholar 

  • Culling JF, Summerfield Q, Marshall DH (1994) Effects of simulated reverberation on the use of binaural cues and fundamental-frequency differences for separating concurrent vowels. Speech Commun 14:71–95.

    Google Scholar 

  • Darwin CJ (1984) Perceiving vowels in the presence of another sound: constraints on formant perception. J Acoust Soc Am 76:1636–1647.

    CAS  PubMed  Google Scholar 

  • Darwin CJ (1990) Environmental influences on speech perception. In: Advances in Speech, Hearing and Language Processing, vol. 1. London: JAI Press, pp. 219–241.

    Google Scholar 

  • Darwin CJ (1992) Listening to two things at once. In: Schouten MEH (ed) The Auditory Processing of Speech: From Sounds to Words. Berlin: Mouton de Gruyter, pp. 133–147.

    Google Scholar 

  • Darwin CJ (1997) Auditory Grouping. Trends in Cognitive Science 1:327–333.

    Google Scholar 

  • Darwin CJ, Carlyon RP (1995) Auditory Grouping. In: Moore BCJ (ed) The Handbook of Perception and Cognition, vol. 6, Hearing. London: Academic Press.

    Google Scholar 

  • Darwin CJ, Gardner RB (1986) Mistuning a harmonic of a vowel: grouping and phase effects on vowel quality. J Acoust Soc Am 79:838–845.

    CAS  PubMed  Google Scholar 

  • Darwin CJ, Hukin RW (1997) Perceptual segregation of a harmonic from a vowel by interaural time difference and frequency proximity. J Acoust Soc Am 102: 2316–2324.

    CAS  PubMed  Google Scholar 

  • Darwin CJ, Hukin RW (1998) Perceptual segregation of a harmonic from a vowel by interaural time difference in conjunction with mistuning and onset asynchrony. J Acoust Soc Am 103:1080–1084.

    CAS  PubMed  Google Scholar 

  • Darwin CJ, McKeown JD, Kirby D (1989) Compensation for transmission channel and speaker effects on vowel quality. Speech Commun 8:221–234.

    Google Scholar 

  • Delattre P, Liberman AM, Cooper FS, Gerstman LJ (1952) An experimental study of the acoustic determinants of vowel color: observations on one-and two-formant vowels synthesized from spectrographic patterns. Word 8:195–201.

    Google Scholar 

  • Delgutte B (1980) Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers. J Acoust Soc Am 68:843–857.

    CAS  PubMed  Google Scholar 

  • Delgutte B (1996) Auditory neural processing of speech. In: Hardcastle WJ, Laver J (eds) The Handbook of Phonetic Sciences. Oxford: Blackwell.

    Google Scholar 

  • Delgutte B, Kiang NYS (1984) Speech coding in the auditory nerve: IV. Sounds with consonant-like dynamic characteristics. J Acoust Soc Am 75:897–907.

    CAS  PubMed  Google Scholar 

  • Deng L, Kheirallah I (1993) Dynamic formant tracking of noisy speech using temporal analysis on outputs from a nonlinear cochlear model. IEEE Trans Biomed Eng 40:456–467.

    CAS  PubMed  Google Scholar 

  • Dirks DD, Bower DR (1969) Masking effects of speech competing messages. J Speech Hear Res 12:229–245.

    CAS  PubMed  Google Scholar 

  • Dirks DD, Wilson RH (1969) The effect of spatially separated sound sources on speech intelligibility. J Speech Hear Res 12:5–38.

    CAS  PubMed  Google Scholar 

  • Dirks DD, Wilson RH, Bower DR (1969) Effects of pulsed masking on selected speech materials. J Acoust Soc Am 46:898–906.

    CAS  PubMed  Google Scholar 

  • Dissard P, Darwin CJ (2000) Extracting spectral envelopes: formant frequency matching between sounds on different and modulated fundamental frequencies. J Acoust Soc Am 107:960–969.

    CAS  PubMed  Google Scholar 

  • Dorman MF, Loizou PC, Rainey D (1997). Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise outputs. J Acoust Soc Am 102:2403–2411.

    CAS  PubMed  Google Scholar 

  • Dorman MF, Loizou PC, Fitzke J, Tu Z (1998). The recognition of sentences in noise by normal-hearing listeners using simulations of cochlear-implant signal processors with 6–20 channels. J Acoust Soc Am 104:3583–3585.

    CAS  PubMed  Google Scholar 

  • Dreher JJ, O’Neill JJ (1957) Effects of ambient noise on speaker intelligibility for words and phrases. J Acoust Soc Am 29:1320–1323.

    Google Scholar 

  • Drullman R (1995a) Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am 97:585–592.

    CAS  PubMed  Google Scholar 

  • Drullman R (1995b) Speech intelligibility in noise: relative contribution of speech elements above and below the noise level. J Acoust Soc Am 98:1796–1798.

    CAS  PubMed  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95:2670–2680.

    CAS  PubMed  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95:1053–1064.

    CAS  PubMed  Google Scholar 

  • Dubno J, Ahlstrom JB (1995) Growth of low-pass masking of pure tones and speech for hearing-impaired and normal-hearing listeners. J Acoust Soc Am 98:3113–3124.

    CAS  PubMed  Google Scholar 

  • Duifhuis H, Willems LF, Sluyter RJ (1982) Measurement of pitch on speech: an implementation of Goldstein’s theory of pitch perception. J Acoust Soc Am 71:1568–1580.

    CAS  PubMed  Google Scholar 

  • Dunn HK, White SD (1940) Statistical measurements on conversational speech. J Acoust Soc Am 11:278–288.

    Google Scholar 

  • Duquesnoy AJ (1983) Effect of a single interfering noise or speech source upon the binaural sentence intelligibility of aged persons. J Acoust Soc Am 74:739–743.

    CAS  PubMed  Google Scholar 

  • Duquesnoy AJ, Plomp R (1983) The effect of a hearing aid on the speech-reception threshold of a hearing-impaired listener in quiet and in noise. J Acoust Soc Am 73:2166–2173.

    CAS  PubMed  Google Scholar 

  • Egan JP, Wiener FM (1946) On the intelligibility of bands of speech in noise. J Acoust Soc Am 18:435–441.

    Google Scholar 

  • Egan JP, Carterette EC, Thwing EJ (1954) Some factors affecting multi-channel listening. J Acoust Soc Am 26:774–782.

    Google Scholar 

  • Elliot LL (1995) Verbal auditory closure and the Speech Perception in Noise (SPIN) test. J Speech Hear Res 38:1363–1376.

    Google Scholar 

  • Fahey RP, Diehl RL, Traunmuller H (1996) Perception of back vowels: effects of varying F1-f0 Bark distance. J Acoust Soc Am 99:2350–2357.

    CAS  PubMed  Google Scholar 

  • Fant G (1960) Acoustic Theory of Speech Production. Mouton: The Hague.

    Google Scholar 

  • Festen JM (1993) Contributions of comodulation masking release and temporal resolution to the speech-reception threshold masked by an interfering voice. J Acoust Soc Am 94:1295–1300.

    CAS  PubMed  Google Scholar 

  • Festen JM, Plomp R (1981) Relations between auditory functions in normal hearing. J Acoust Soc Am 70:356–369.

    CAS  PubMed  Google Scholar 

  • Festen JM, Plomp R (1990) Effects of fluctuating noise and interfering speech on the speech-reception threshold for impaired and normal hearing. J Acoust Soc Am 88:1725–1736.

    CAS  PubMed  Google Scholar 

  • Finitzo-Hieber T, Tillman TW (1978) Room acoustics effects on monosyllabic word discrimination ability for normal and hearing impaired children. J Speech Hear Res 21:440–458.

    CAS  PubMed  Google Scholar 

  • Fletcher H (1952) The perception of sounds by deafened persons. J Acoust Soc Am 24:490–497.

    Google Scholar 

  • Fletcher H (1953) Speech and Hearing in Communication. New York: Van Nostrand (reprinted by the Acoustical Society of America, 1995).

    Google Scholar 

  • Fletcher H, Galt RH (1950) The perception of speech and its relation to telephony. J Acoust Soc Am 22:89–151.

    Google Scholar 

  • French NR, Steinberg JC (1947) Factors governing the intelligibility of speech sounds. J Acoust Soc Am 19:90–119.

    Google Scholar 

  • Fu Q-J, Shannon RV, Wang X (1998) Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. J Acoust Soc Am 104:3586–3596.

    CAS  PubMed  Google Scholar 

  • Gardner RB, Gaskill SA, Darwin CJ (1989) Perceptual grouping of formants with static and dynamic differences in fundamental frequency. J Acoust Soc Am 85:1329–1337.

    Google Scholar 

  • Gat IB, Keith RW (1978) An effect of linguistic experience. Auditory word discrimination by native and non-native speakers of English. Audiology 17:339–345.

    CAS  PubMed  Google Scholar 

  • Gatehouse S (1992) The time course and magnitude of perceptual acclimitization to frequency responses: evidence from monaural fitting of hearing aids. J Acoust Soc Am 92:1258–1268.

    CAS  PubMed  Google Scholar 

  • Gatehouse S (1993) Role of perceptual acclimitization to frequency responses: evidence from monaural fitting of hearing aids. J Am Acad Audiol 4:296–306.

    CAS  PubMed  Google Scholar 

  • Gelfand SA, Silman S (1979) Effects of small room reverberation on the recognition of some consonant features. J Acoust Soc Am 66:22–29.

    Google Scholar 

  • Glasberg BR, Moore BCJ (1986) Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J Acoust Soc Am 79:1020–1033.

    CAS  PubMed  Google Scholar 

  • Gong Y (1994) Speech recognition in noisy environments: a survey. Speech Commun 16:261–291.

    Google Scholar 

  • Gordon-Salant S, Fitzgibbons PJ (1995) Recognition of multiply degraded speech by young and elderly listeners. J Speech Hear Res 38:1150–1156.

    CAS  PubMed  Google Scholar 

  • Grant KW, Ardell LH, Kuhl PK, Sparks DW (1985) The contribution of fundamental frequency, amplitude envelope, and voicing duration cues to speechreading in normal-hearing subjects. J Acoust Soc Am 77:671–677.

    CAS  PubMed  Google Scholar 

  • Grant KW, Braida LD, Renn RJ (1991) Single band amplitude envelope cues as an aid to speechreading. Q J Exp Psychol 43A:621–645.

    Google Scholar 

  • Grant KW, Braida LD, Renn RJ (1994) Auditory supplements to speechreading: combining amplitude envelope cues from different spectral regions of speech. J Acoust Soc Am 95:1065–1073.

    CAS  PubMed  Google Scholar 

  • Greenberg S (1995) Auditory processing of speech. In: Lass NJ (ed) Principles of Experimental Phonetics. St. Louis: Mosby-Year Book, pp. 362–407.

    Google Scholar 

  • Greenberg S (1996) Understanding speech understanding: Towards a unified theory of speech perception. In: Greenberg S, Ainsworth WA (eds) Proceedings of the ESCA Workshop on the Auditory Basis of Speech Perception, pp. 1–8.

    Google Scholar 

  • Greenberg S, Arai T (1998) Speech intelligibility is highly tolerant of cross-channel spectral asynchrony. Proceedings of the Joint Meeting of the Acoustical Society of America and the International Congress on Acoustics, pp. 2677–2678.

    Google Scholar 

  • Greenberg S, Arai T, Silipo R (1998) Speech intelligibility derived from exceedingly sparse spectral information. Proceedings of the International Conference on Spoken Language Processing, Sydney, pp. 74–77.

    Google Scholar 

  • Gustafsson HA, Arlinger SD (1994) Masking of speech by amplitude-modulated noise. J Acoust Soc Am 95:518–529.

    CAS  PubMed  Google Scholar 

  • Haggard MP (1985) Temporal patterning in speech: the implications of temporal resolution and signal processing. In: Michelson A (ed) Time Resolution in Auditory Systems. Berlin: Springer-Verlag, pp. 217–237.

    Google Scholar 

  • Hall JW, Grose JH (1991) Relative contributions of envelope maxima and minima to comodulation masking release. Q J Exp Psychol 43A:349–372.

    Google Scholar 

  • Hall JW, Haggard MP, Fernandez MA (1984) Detection in noise by spectrotemporal analysis. J Acoust Soc Am 76:50–56.

    CAS  PubMed  Google Scholar 

  • Hanky TD, Steer MD (1949) Effect of level of distracting noise upon speaking rate, duration and intensity. J Speech Hear Dis 14:363–368.

    Google Scholar 

  • Hanson BA, Applebaum TH (1990) Robust speaker-independent word recognition using static, dynamic and acceleration features: experiments with Lombard and noisy speech. Proc Int Conf Acoust Speech Signal Processing 90:857–860.

    Google Scholar 

  • Hartmann WM (1996) Pitch, periodicity, and auditory organization. J Acoust Soc Am 100:3491–3502.

    CAS  PubMed  Google Scholar 

  • Hawkins JE Jr, Stevens SS (1950) The masking of pure tones and of speech by white noise. J Acoust Soc Am 22:6–13.

    Google Scholar 

  • Helfer KS (1992) Aging and the binaural advantage in reverberation and noise. J Speech Hear Res 35:1394–1401.

    CAS  PubMed  Google Scholar 

  • Helfer KS (1994) Binaural cues and consonant perception in reverberation and noise. J Speech Hear Res 37:429–438.

    CAS  PubMed  Google Scholar 

  • Hicks ML, Bacon SP (1992) Factors influencing temporal effects with notched-noise maskers. Hear Res 64:123–132.

    CAS  PubMed  Google Scholar 

  • Hillenbrand JM, Nearey TM (1999) Identification of resynthesized /hVd/ utterances: effects of formant contour. J Acoust Soc Am 105:3509–3523.

    CAS  PubMed  Google Scholar 

  • Hillenbrand JM, Getty LA, Clark MJ, Wheeler K (1995) Acoustic characteristics of American English vowels. J Acoust Soc Am 97:3099–3111.

    CAS  PubMed  Google Scholar 

  • Hockett CF (1955) A Manual of Phonology. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Horwitz AR, Turner CW (1997) The time course of hearing aid benefit. Ear Hear 18:1–11.

    CAS  PubMed  Google Scholar 

  • Houtgast T, Steeneken HJM (1973) The modulation transfer function in room acoustics as a predictor of speech intelligibility. Acustica 28:66–73.

    Google Scholar 

  • Houtgast T, Steeneken HJM (1985) A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. J Acoust Soc Am 77:1069–1077.

    Google Scholar 

  • Howard-Jones PA, Rosen S (1993) Uncomodulated glimpsing in “checkerboard” noise. J Acoust Soc Am 93:2915–2922.

    CAS  PubMed  Google Scholar 

  • Howes D (1957) On the relation between the intelligibility and frequency of occurrence of English words. J Acoust Soc Am 29:296–303.

    Google Scholar 

  • Huggins AWF (1975) Temporally segmented speech. Percept Psychophys 18:149–157.

    Google Scholar 

  • Hukin RW, Darwin CJ (1995) Comparison of the effect of onset asynchrony on auditory grouping in pitch matching and vowel identification. Percept Psychophys 57:191–196.

    CAS  PubMed  Google Scholar 

  • Humes LE, Dirks DD, Bell TS, Ahlstrom C, Kincaid GE (1986) Application of the articulation index and the speech transmission index to the recognition of speech by normal-hearing and hearing-impaired listeners. J Speech Hear Res 29:447–462.

    CAS  PubMed  Google Scholar 

  • Humes LE, Boney S, Loven F (1987) Further validation of the speech transmission index (STI). J Speech Hear Res 30:403–410.

    CAS  PubMed  Google Scholar 

  • Hygge S, Rönnberg J, Larsby B, Arlinger S (1992) Normal-hearing and hearing-impaired subjects’ ability to just follow conversation in competing speech, reversed speech, and noise backgrounds. J Speech Hear Res 35:208–215.

    CAS  PubMed  Google Scholar 

  • Joris PX, Yin TC (1995) Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophys 73:1043–1062.

    CAS  Google Scholar 

  • Junqua JC, Anglade Y (1990) Acoustic and perceptual studies of Lombard speech: application to isolated words automatic speech recognition. Proc Int Conf Acoust Speech Signal Processing 90:841–844.

    Google Scholar 

  • Kalikow DN, Stevens KN, Elliot LL (1977) Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability. J Acoust Soc Am 61:1337–1351.

    CAS  PubMed  Google Scholar 

  • Kates JM (1987) The short-time articulation index. J Rehabil Res Dev 24:271–276.

    CAS  PubMed  Google Scholar 

  • Keurs M ter, Festen JM, Plomp R (1992) Effect of spectral envelope smearing on speech reception. I. J Acoust Soc Am 91:2872–2880.

    PubMed  Google Scholar 

  • Keurs M ter, Festen JM, Plomp R (1993a) Effect of spectral envelope smearing on speech reception. II. J Acoust Soc Am 93:1547–1552.

    PubMed  Google Scholar 

  • Keurs M ter, Festen JM, Plomp R (1993b) Limited resolution of spectral contrast and hearing loss for speech in noise. J Acoust Soc Am 94:1307–1314.

    PubMed  Google Scholar 

  • Kewley-Port D, Zheng Y (1998) Auditory models of formant frequency discrimination for isolated vowels. J Acoust Soc Am 103:1654–1666.

    CAS  PubMed  Google Scholar 

  • Klatt DH (1982) Speech processing strategies based on auditory models. In: Carlson R, Granstrom B (eds) The Representation of Speech in the Peripheral Auditory System. Amsterdam: Elsevier.

    Google Scholar 

  • Klatt DH (1989) Review of selected models of speech perception. In: Marslen-Wilson W (ed) Lexical Representation and Process. Cambridge, MA: MIT Press, pp. 169–226.

    Google Scholar 

  • Kluender KR, Jenison RL (1992) Effects of glide slope, noise intensity, and noise duration in the extrapolation of FM glides through noise. Percept Psychophys 51:231–238.

    CAS  PubMed  Google Scholar 

  • Kreiman J (1997) Listening to voices: theory and practice in voice perception research. In: Johnson K, Mullenix J (eds) Talker Variability in Speech Processing. San Diego: Academic Press.

    Google Scholar 

  • Kryter KD (1946) Effects of ear protective devices on the intelligibility of speech in noise. J Acoust Soc Am 18:413–417.

    Google Scholar 

  • Kryter KD (1962) Methods for the calculation and use of the articulation index. J Acoust Soc Am 34:1689–1697.

    Google Scholar 

  • Kryter D (1985) The Effects of Noise on Man, 2nd ed. London: Academic Press.

    Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167.

    Google Scholar 

  • Ladefoged P (1967) Three Areas of Experimental Phonetics. Oxford: Oxford University Press, pp. 162–165.

    Google Scholar 

  • Lane H, Tranel B (1971) The Lombard sign and the role of hearing in speech. J Speech Hear Res 14:677–709.

    Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115–142.

    CAS  PubMed  Google Scholar 

  • Lea AP (1992) Auditory modeling of vowel perception. PhD thesis, University of Nottingham.

    Google Scholar 

  • Lea AP, Summerfield Q (1994) Minimal spectral contrast of formant peaks for vowel recognition as a function of spectral slope. Percept Psychophys 56:379–391.

    CAS  PubMed  Google Scholar 

  • Leek MR, Dorman MF, Summerfield, Q (1987) Minimum spectral contrast for vowel identification by normal-hearing and hearing-impaired listeners. J Acoust Soc Am 81:148–154.

    CAS  PubMed  Google Scholar 

  • Lehiste I, Peterson GE (1959) The identification of filtered vowels. Phonetica 4:161–177.

    Google Scholar 

  • Levitt H, Rabiner LR (1967) Predicting binaural gain in intelligibility and release from masking for speech. J Acoust Soc Am 42:820–829.

    CAS  PubMed  Google Scholar 

  • Liberman AM, Delattre PC, Gerstman LJ, Cooper FS (1956) Tempo of frequency change as a cue for distinguishing classes of speech sounds. J Exp Psychol 52:127–137.

    CAS  PubMed  Google Scholar 

  • Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the speech code. Psychol Rev 74:431–461.

    CAS  PubMed  Google Scholar 

  • Licklider JCR, Guttman N (1957) Masking of speech by line-spectrum interference. J Acoust Soc Am 29:287–296.

    Google Scholar 

  • Licklider JCR, Miller GA (1951) The perception of speech. In: Stevens SS (ed) Handbook of Experimental Psychology. New York: John Wiley, pp. 1040–1074.

    Google Scholar 

  • Lindblom B (1986) Phonetic universals in vowel systems. In Ohala JJ, Jaeger JJ, (eds.) Experimental Phonology. New York: Academic Press, pp. 13–44.

    Google Scholar 

  • Lindblom B (1990) Explaining phonetic variation: a sketch of the H&H theory. In: Hardcastle WJ, Marshall A (eds) Speech Production and Speech Modelling. Dordrecht: Kluwer Academic, pp. 403–439.

    Google Scholar 

  • Lippmann R (1996a) Speech perception by humans and machines. In: Greenberg S, Ainsworth WA (eds) Proceedings of the ESCA Workshop on the Auditory Basis of Speech Perception. pp. 309–316.

    Google Scholar 

  • Lippmann R (1996b) Accurate consonant perception without mid-frequency speech energy. IEEE Trans Speech Audio Proc 4:66–69.

    Google Scholar 

  • Liu SA (1996) Landmark detection for distinctive feature-based speech recognition. J Acoust Soc Am 100:3417–3426.

    Google Scholar 

  • Lively SE, Pisoni DB, Van Summers W, Bernacki RH (1993) Effects of cognitive workload on speech production: acoustic analyses and perceptual consequences. J Acoust Soc Am 93:2962–2973.

    CAS  PubMed  Google Scholar 

  • Lombard E (1911) Le signe de ľélévation de la voix. Ann Malad ľOreille Larynx Nez Pharynx 37:101–119.

    Google Scholar 

  • Luce PA, Pisoni DB (1998) Recognizing spoken words: the neighborhood activation model. Ear Hear 19:1–36.

    CAS  PubMed  Google Scholar 

  • Luce PA, Pisoni DB, Goldinger SD (1990) Similarity neighborhoods of spoken words. In: Altmann GTM (ed) Cognitive Models of Speech Processing. Cambridge: MIT Press, pp. 122–147.

    Google Scholar 

  • Ludvigsen C (1987) Prediction of speech intelligibility for normal-hearing and cochlearly hearing impaired listeners. J Acoust Soc Am 82:1162–1171.

    CAS  PubMed  Google Scholar 

  • Ludvigsen C, Elberling C, Keidser G, Poulsen T (1990) Prediction of intelligibility for nonlinearly processed speech. Acta Otolaryngol Suppl 469:190–195.

    CAS  PubMed  Google Scholar 

  • MacLeod A, Summerfield Q (1987) Quantifying the contribution of vision to speech perception in noise. Br J Audiol 21:131–141.

    CAS  PubMed  Google Scholar 

  • Marin CMH, McAdams SE (1991) Segregation of concurrent sounds. II: Effects of spectral-envelope tracing, frequency modulation coherence and frequency modulation width. J Acoust Soc Am 89:341–351.

    CAS  PubMed  Google Scholar 

  • Markel JD, Gray AH (1976) Linear Prediction of Speech. New York: Springer-Verlag.

    Google Scholar 

  • Marslen-Wilson W (1989) Access and integration: projecting sound onto meaning. In: Marslen-Wilson W (ed) Lexical Representation and Process. Cambridge: MIT Press, pp. 3–24.

    Google Scholar 

  • Mayo LH, Florentine M, Buus S (1997) Age of second-language acquisition and perception of speech in noise. J Speech Lang Hear Res 40:686–693.

    CAS  PubMed  Google Scholar 

  • McAdams SE (1989) Segregation of concurrent sounds: effects of frequency-modulation coherence and a fixed resonance structure. J Acoust Soc Am 85:2148–2159.

    Google Scholar 

  • McKay CM, Vandali AE, McDermott HJ, Clark GM (1994) Speech processing for multichannel cochlear implants: variations of the Spectral Maxima Sound Processor strategy. Acta Otolaryngol 114:52–58.

    CAS  PubMed  Google Scholar 

  • Meddis R, Hewitt M (1991) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Meddis R, Hewitt M (1992) Modelling the identification of concurrent vowels with different fundamental frequencies. J Acoust Soc Am 91:233–245.

    CAS  PubMed  Google Scholar 

  • Miller GA (1947) The masking of speech. Psychol Bull 44:105–129.

    Google Scholar 

  • Miller GA, Licklider JCR (1950) The intelligibility of interrupted speech. J Acoust Soc Am 22:167–173.

    Google Scholar 

  • Miller GA, Nicely PE (1955) An analysis of perceptual confusions among some English consonants. J Acoust Soc Am 27:338–352.

    Google Scholar 

  • Miller GA, Heise GA, Lichten W (1951) The intelligibility of speech as a function of the context of the test materials. J Exp Psychol 41:329–335.

    CAS  PubMed  Google Scholar 

  • Moncur JP, Dirks D (1967) Binaural and monaural speech intelligibility in reverberation. J Speech Hear Res 10:186–195.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1995) Perceptual Consequences of Cochlear Hearing Impairment. London: Academic Press.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1983) Suggested formulae for calculating auditory-filter shapes and excitation patterns. J Acoust Soc Am 74:750–753.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR (1987) Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns. Hear Res 28:209–225.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR, Peters RW (1985) Relative dominance of individual partials in determining the pitch of complex tones. J Acoust Soc Am 77:1861–1867.

    CAS  PubMed  Google Scholar 

  • Müsch H, Buus S (2001a). Using statistical decision theory to predict speech intelligibility. I. Model structure. J Acoust Soc Am 109:2896–2909.

    PubMed  Google Scholar 

  • Müsch H, Buus S (2001b). Using statistical decision theory to predict speech intelligibility. II. Measurement and prediction of consonant-discrimination performance. J Acoust Soc Am 109:2910–2920.

    PubMed  Google Scholar 

  • Nábeělek AK (1988) Identification of vowels in quiet, noise, and reverberation: relationships with age and hearing loss. J Acoust Soc Am 84:476–484.

    Google Scholar 

  • Nábeělek AK, Dagenais PA (1986) Vowel errors in noise and in reverberation by hearing-impaired listeners. J Acoust Soc Am 80:741–748.

    Google Scholar 

  • Nábeělek AK, Letowski TR (1985) Vowel confusions of hearing-impaired listeners under reverberant and non-reverberant conditions. J Speech Hear Disord 50:126–131.

    Google Scholar 

  • Nábeělek AK, Letowski TR (1988) Similarities of vowels in nonreverberant and reverberant fields. J Acoust Soc Am 83:1891–1899.

    Google Scholar 

  • Nábeělek AK, Pickett JM (1974) Monaural and binaural speech perception through hearing aids under noise and reverberation with normal and hearing-impaired listeners. J Speech Hear Res 17:724–739.

    Google Scholar 

  • Nábeělek AK, Robinson PK (1982) Monaural and binaural speech perception in reverberation in listeners of various ages. J Acoust Soc Am 71:1242–1248.

    Google Scholar 

  • Nábeělek AK, Letowski TR, Tucker FM (1989) Reverberant overlap-and selfmasking in consonant identification. J Acoust Soc Am 86:1259–1265.

    Google Scholar 

  • Nábeělek AK, Czyzewski Z, Crowley H (1994) Cues for perception of the diphthong [ai] in either noise or reverberation: I. Duration of the transition. J Acoust Soc Am 95:2681–2693.

    Google Scholar 

  • Nearey TM (1989) Static, dynamic, and relational properties in vowel perception. J Acoust Soc Am 85:2088–2113.

    CAS  PubMed  Google Scholar 

  • Neuman AC, Hochberg I (1983) Children’s perception of speech in reverberation. J Acoust Soc Am 73:2145–2149.

    CAS  PubMed  Google Scholar 

  • Nocerino N, Soong FK, Rabiner LR, Klatt DH (1985) Comparative study of several distortion measures for speech recognition. Speech Commun 4:317–331.

    Google Scholar 

  • Noordhoek IM, Drullman R (1997) Effect of reducing temporal intensity modulations on sentence intelligibility. J Acoust Soc Am 101:498–502.

    CAS  PubMed  Google Scholar 

  • Nooteboom SG (1968) Perceptual confusions among Dutch vowels presented in noise. IPO Ann Prog Rep 3:68–71.

    Google Scholar 

  • Palmer AR (1995) Neural signal processing. In: Moore BCJ (ed) The Handbook of Perception and Cognition, vol. 6, Hearing. London: Academic Press.

    Google Scholar 

  • Palmer AR, Summerfield Q, Fantini DA (1995) Responses of auditory-nerve fibers to stimuli] producing psychophysical enhancement. J Acoust Soc Am 97:1786–1799.

    CAS  PubMed  Google Scholar 

  • Patterson RD, Moore BCJ (1986) Auditory filters and excitation patterns as representations of auditory frequency selectivity. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press.

    Google Scholar 

  • Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang C, Allerhand MH (1992) Complex sounds and auditory images. In: Cazals Y, Demany L, Horner K (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 429–446.

    Google Scholar 

  • Pavlovic CV (1987) Derivation of primary parameters and procedures for use in speech intelligibility predictions. J Acoust Soc Am 82:413–422.

    CAS  PubMed  Google Scholar 

  • Pavlovic CV, Studebaker GA (1984) An evaluation of some assumptions underlying the articulation index. J Acoust Soc Am 75:1606–1612.

    CAS  PubMed  Google Scholar 

  • Pavlovic CV, Studebaker GA, Sherbecoe RL (1986) An articulation index based procedure for predicting the speech recognition performance of hearing-impaired individuals. J Acoust Soc Am 80:50–57.

    CAS  PubMed  Google Scholar 

  • Payton KL, Uchanski RM, Braida LD (1994) Intelligibility of conversational and clear speech in noise and reverberation for listeners with normal and impaired hearing. J Acoust Soc Am 95:1581–1592.

    CAS  PubMed  Google Scholar 

  • Peters RW, Moore BCJ, Baer T (1998) Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people. J Acoust Soc Am 103:577–587.

    CAS  PubMed  Google Scholar 

  • Peterson GE, Barney HL (1952) Control methods used in a study of vowels. J Acoust Soc Am 24:175–184.

    Google Scholar 

  • Picheny M, Durlach N, Braida L (1985) Speaking clearly for the hard of hearing I: Intelligibility differences between clear and conversational speech. J Speech Hear Res 28:96–103.

    CAS  PubMed  Google Scholar 

  • Picheny M, Durlach N, Braida L (1986) Speaking clearly for the hard of hearing II: Acoustic characteristics of clear and conversational speech. J Speech Hear Res 29:434–446.

    CAS  PubMed  Google Scholar 

  • Pickett JM (1956) Effects of vocal force on the intelligibility of speech sounds. J Acoust Soc Am 28:902–905.

    Google Scholar 

  • Pickett JM (1957) Perception of vowels heard in noises of various spectra. J Acoust Soc Am 29:613–620.

    Google Scholar 

  • Pisoni DB, Bernacki RH, Nusbaum HC, Yuchtman M (1985) Some acoustic-phonetic correlates of speech produced in noise. Proc Int Conf Acoust Speech Signal Proc, pp. 1581–1584.

    Google Scholar 

  • Plomp R (1976) Binaural and monaural speech intelligibility of connected discourse in reverberation as a function of azimuth of a single competing sound source (speech or noise). Acustica 24:200–211.

    Google Scholar 

  • Plomp R (1983) The role of modulation in hearing. In: Klinke R (ed) Hearing: Physiological Bases and Psychophysics. Heidelberg: Springer-Verlag, pp. 270–275.

    Google Scholar 

  • Plomp R, Mimpen AM (1979) Improving the reliability of testing the speech reception threshold for sentences. Audiology 18:43–52.

    CAS  PubMed  Google Scholar 

  • Plomp R, Mimpen AM (1981) Effect of the orientation of the speaker’s head and the azimuth of a sound source on the speech reception threshold for sentences. Acustica 48:325–328.

    Google Scholar 

  • Plomp R, Steeneken HJM (1978) Place dependence of timbre in reverberant sound fields. Acustica 28:50–59.

    Google Scholar 

  • Pollack I, Pickett JM (1958) Masking of speech by noise at high sound levels. J Acoust Soc Am 30:127–130.

    Google Scholar 

  • Pollack I, Rubenstein H, Decker L (1959) Intelligibility of known and unknown message sets. J Acoust Soc Am 31:273–279.

    Google Scholar 

  • Pols L, Kamp L van der, Plomp R (1969) Perceptual and physical space of vowel sounds. J Acoust Soc Am 46:458–467.

    CAS  PubMed  Google Scholar 

  • Powers GL, Wilcox JC (1977) Intelligibility of temporally interrupted speech with and without intervening noise. J Acoust Soc Am 61:195–199.

    CAS  PubMed  Google Scholar 

  • Rankovic CM (1995) An application of the articulation index to hearing aid fitting. J Speech Hear Res 34:391–402.

    Google Scholar 

  • Rankovic CM (1998) Factors governing speech reception benefits of adaptive linear filtering for listeners with sensorineural hearing loss. J Acoust Soc Am 103: 1043–1057.

    CAS  PubMed  Google Scholar 

  • Remez RE, Rubin PE, Pisoni DB, Carrell TD (1981) Speech perception without traditional speech cues. Science 212:947–950.

    CAS  PubMed  Google Scholar 

  • Roberts B Moore BCJ (1990) The influence of extraneous sounds on the perceptual estimation of first-formant frequency in vowels. J Acoust Soc Am 88:2571–2583.

    CAS  PubMed  Google Scholar 

  • Roberts B, Moore BCJ (1991a) The influence of extraneous sounds on the perceptual estimation of first-formant frequency in vowels under conditions of asynchrony. J Acoust Soc Am 89:2922–2932.

    Google Scholar 

  • Roberts B, Moore BCJ (1991b) Modeling the effects of extraneous sounds on the perceptual estimation of first-formant frequency in vowels. J Acoust Soc Am 89:2933–2951.

    Google Scholar 

  • Rooij JC van, Plomp R (1991) The effect of linguistic entropy on speech perception in noise in young and elderly listeners. J Acoust Soc Am 90:2985–2991.

    PubMed  Google Scholar 

  • Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. In: Carlyon RP, Darwin CJ, Russell IJ (eds) Processing of Complex Sounds by the Auditory System. Oxford: Oxford University Press, pp. 73–80.

    Google Scholar 

  • Rosen S, Faulkner A, Wilkinson L (1998) Perceptual adaptation by normal listeners to upward shifts of spectral information in speech and its relevance for users of cochlear implants. Abstracts of the 1998 Midwinter Meeting of the Association for Research in Otolaryngology.

    Google Scholar 

  • Rosner BS, Pickering JB (1994) Vowel Perception and Production. Oxford: Oxford University Press.

    Google Scholar 

  • Rostolland D (1982) Acoustic features of shouted voice. Acustica 50:118–125.

    Google Scholar 

  • Rostolland D (1985) Intelligibility of shouted voice. Acustica 57:103–121.

    Google Scholar 

  • Scheffers MTM (1983) Sifting Vowels: Auditory Pitch Analysis and Sound Segregation. PhD thesis, Rijksuniversiteit te Groningen, The Netherlands.

    Google Scholar 

  • Shannon CE (1951) Prediction and entropy of printed English. Bell Sys Tech J 30:50–64.

    Google Scholar 

  • Shannon CE, Weaver W (1949) A Mathematical Theory of Communication. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304.

    CAS  PubMed  Google Scholar 

  • Shannon RV, Zeng F-G, Wygonski J (1998). Speech recognition with altered spectral distribution of envelope cues. J Acoust Soc Am 104:2467–2476.

    CAS  PubMed  Google Scholar 

  • Simpson AM, Moore BCJ, Glasberg BR (1990) Spectral enhancement to improve the intelligibility of speech in noise for hearing-impaired listeners. Acta Otolaryngol Suppl 469:101–107.

    CAS  Google Scholar 

  • Skinner MW, Clark GM, Whitford LA, et al. (1994) Evaluation of a new spectral peak coding strategy for the Nucleus 22 Channel Cochlear Implant System. Am J Otol 15 (suppl 2):15–27.

    PubMed  Google Scholar 

  • Smith RL (1979) Adaptation, saturation, and physiological masking in single auditory-nerve fibers. J Acoust Soc Am 65:166–178.

    CAS  PubMed  Google Scholar 

  • Sommers M, Kewley-Port D (1996) Modeling formant frequency discrimination of female vowels J Acoust Soc Am 99:3770–3781.

    CAS  PubMed  Google Scholar 

  • Speaks C, Karmen JL, Benitez L (1967) Effect of a competing message on synthetic sentence identification. J Speech Hear Res 10:390–395.

    CAS  PubMed  Google Scholar 

  • Spieth W, Webster JC (1955) Listening to differentially filtered competing messages. J Acoust Soc Am 27:866–871.

    Google Scholar 

  • Steeneken HJM, Houtgast T (1980) A physical method for measuring speech-transmission quality. J Acoust Soc Am 67:318–326.

    CAS  PubMed  Google Scholar 

  • Steeneken HJM, Houtgast T (2002) Validation of the revised STIr method. Speech Commun 38:413–425.

    Google Scholar 

  • Stevens KN (1980) Acoustic correlates of some phonetic categories. J Acoust Soc Am 68:836–842.

    CAS  PubMed  Google Scholar 

  • Stevens KN (1983) Acoustic properties used for the identification of speech sounds. In: Parkins CW, Anderson SW (eds) Cochlear Prostheses: An International Symposium Ann NY Acad Sci 403:2–17.

    Google Scholar 

  • Stevens SS, Miller GA, Truscott I (1946) The masking of speech by sine waves, square waves, and regular and modulated pulses. J Acoust Soc Am 18:418–424.

    Google Scholar 

  • Stickney GS, Assmann PF (2001) Acoustic and linguistic factors in the perception of bandpass-filtered speech. J Acoust Soc Am 109:1157–1165.

    CAS  PubMed  Google Scholar 

  • Stubbs RJ, Summerfield AQ (1991) Effects of signal-to-noise ratio, signal periodicity, and degree of hearing impairment on the performance of voice-separation algorithms. J Acoust Soc Am 89:1383–1393.

    CAS  PubMed  Google Scholar 

  • Studebaker GA, Sherbecoe RL (2002) Intensity-importance functions for bandlimited monosyllabic words. J Acoust Soc Am 111:1422–1436.

    PubMed  Google Scholar 

  • Studebaker GA, Pavlovic CV, Sherbecoe RL (1987) A frequency importance function for continuous discourse. J Acoust Soc Am 81:1130–1138.

    CAS  PubMed  Google Scholar 

  • Summerfield Q (1983) Audio-visual speech perception, lipreading, and artificial stimulation. In: Lutman ME, Haggard MP (eds) Hearing Science and Hearing Disorders. London: Academic Press, pp. 131–182.

    Google Scholar 

  • Summerfield Q (1987) Speech perception in normal and impaired hearing. Br Med Bull 43:909–925.

    CAS  PubMed  Google Scholar 

  • Summerfield Q (1992) Role of harmonicity and coherent frequency modulation in auditory grouping. In: Schouten, MEH (ed) The Auditory Processing of Speech. Berlin: Mouton de Gruyter.

    Google Scholar 

  • Summerfield Q, Assmann PF (1987) Auditory enhancement in speech perception. In: Schouten MEH (ed) The Psychophysics of Speech Perception. Dordrecht: Martinus Nijhoff, pp. 140–150.

    Google Scholar 

  • Summerfield Q, Assmann PF (1989) Auditory enhancement and the perception of concurrent vowels. Percept Psychophys 45:529–536.

    CAS  PubMed  Google Scholar 

  • Summerfield Q, Culling JF (1992) Auditorysegregation of competing voices: absence of effects of FM or AM coherence. Philos Trans R Soc Lond B 336:357–366.

    CAS  Google Scholar 

  • Summerfield Q, Culling JF (1995) Auditory computations which separate speech from competing sounds: a comparison of binarual and monaural processes. In: Keller E (ed) Speech Synthesis and Speech Recognition. London: John Wiley.

    Google Scholar 

  • Summerfield Q, Haggard MP, Foster JR, Gray S (1984) Perceiving vowels from uniform spectra: phonetic exploration of an auditory aftereffect. Percept Psychophys 35:203–213.

    CAS  PubMed  Google Scholar 

  • Summerfield Q, Sidwell A, Nelson T (1987) Auditory enhancement of changes in spectral amplitude. J Acoust Soc Am 81:700–708.

    CAS  PubMed  Google Scholar 

  • Summers WV, Pisoni DB, Bernacki RH, Pedlow RI, Stokes MA (1988) Effects of noise on speech production: acoustic and perceptual analyses. J Acoust Soc Am 84:917–928.

    CAS  PubMed  Google Scholar 

  • Suomi K (1984) On talker and phoneme information conveyed by vowels: A whole spectrum approach to the normalization problem. Speech Common 3:199–209.

    Google Scholar 

  • Sussman HM, McCaffrey HA, Matthews SA (1991) An investigation of locus equations as a source of relational invariance for stop place categorization. J Acoust Soc Am 90:1309–1325.

    Google Scholar 

  • Takata Y, NáEbelek AK (1990) English consonant recognition in noise and in reverberation by Japanese and American listeners. J Acoust Soc Am 88:663–666.

    CAS  PubMed  Google Scholar 

  • Tartter VC (1991) Identifiability of vowels and speakers from whispered syllables. Percept Psychophys 49:365–372.

    CAS  PubMed  Google Scholar 

  • Trees DA, Turner CC (1986) Spread of masking in normal and high-frequency hearing-loss subjects. Audiology 25:70–83.

    CAS  PubMed  Google Scholar 

  • Treisman AM (1960) Contextual cues in selective listening. Q J Exp Psychol 12:242–248.

    Google Scholar 

  • Treisman AM (1964) Verbal cues, language, and meaning in selective attention. Am J Psychol 77:206–219.

    CAS  PubMed  Google Scholar 

  • Turner CW, Bentler RA (1998) Does hearing aid benefit increase over time? J Acoust Soc Am 104:3673–3674.

    CAS  PubMed  Google Scholar 

  • Turner CW, Henn C C (1989) The relation between frequency selectivity and the recognition of vowels. J Speech Hear Res 32:49–58.

    CAS  PubMed  Google Scholar 

  • Turner CW, Souza PE, Forget LN (1995) Use of temporal envelope cues in speech recognition by normal and hearing-impaired listeners. J Acoust Soc Am 97:2568–2576.

    CAS  PubMed  Google Scholar 

  • Uchanski RM, Choi SS, Braida LD, Reed CM, Durlach NI (1994) Speaking clearly for the hard of hearing. IV: Further studies on speaking rate. J Speech Hear Res 39:494–509.

    Google Scholar 

  • Van Tasell DJ, Fabry DA, Thibodeau LM (1987a) Vowel identification and vowel masking patterns of hearing-impaired listeners. J Acoust Soc Am 81:1586–1597.

    PubMed  Google Scholar 

  • Van Tasell DJ, Soli SD, Kirby VM, Widin GP (1987b) Temporal cues for consonant recognition: training, talker generalization, and use in evaluation in cochlear implants. J Acoust Soc Am 82:1247–1257.

    Google Scholar 

  • Van Wijngaarden SJ, Steeneken HJM, Houtgast T (2002) Quantifying the intelligibility of speech in noise for non-native listeners. J Acoust Soc Am 111:1906–1916.

    PubMed  Google Scholar 

  • Veen TM, Houtgast T (1985) Spectral sharpness and vowel dissimilarity. J Acoust Soc Am 77:628–634.

    PubMed  Google Scholar 

  • Verschuure J, Brocaar MP (1983) Intelligibility of interrupted meaningful and nonsense speech with and without intervening noise. Percept Psychophys 33:232–240.

    CAS  PubMed  Google Scholar 

  • Viemeister N (1979) Temporal modulation transfer functions based upon modulation transfer functions. J Acoust Soc Am 66:1364–1380.

    CAS  PubMed  Google Scholar 

  • Viemeister NF (1980) Adaptation of masking. In: Brink G van der, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press.

    Google Scholar 

  • Viemeister NF, Bacon S (1982) Forward masking by enhanced components in harmonic complexes. J Acoust Soc Am 71:1502–1507.

    CAS  PubMed  Google Scholar 

  • Walden BE, Schwartz DM, Montgomery AA, Prosek RA (1981) A comparison of the effects of hearing impairment and acoustic filtering on consonant recognition. J Speech Hear Res 24:32–43.

    CAS  PubMed  Google Scholar 

  • Wang MD, Bilger RC (1973) Consonant confusions in noise: a study of perceptual features. J Acoust Soc Am 54:1248–1266.

    CAS  PubMed  Google Scholar 

  • Warren RM (1996) Auditory illusions and the perceptual processing of speech. In: Lass NJ (ed) Principles of Experimental Phonetics. St Louis: Mosby-Year Book.

    Google Scholar 

  • Warren RM, Obusek CJ (1971) Speech perception and perceptual restorations. Percept Psychophys 9:358–362.

    Google Scholar 

  • Warren RM, Obusek CJ, Ackroff JM (1972) Auditory induction: perceptual synthesis of absent sounds. Science 176:1149–1151.

    CAS  PubMed  Google Scholar 

  • Warren RM, Riener KR, Bashford Jr JA, Brubaker BS (1995) Spectral redundancy: intelligibility of sentences heard through narrow spectral slits. Percept Psychophys 57:175–182.

    CAS  PubMed  Google Scholar 

  • Warren RM, Hainsworth KR, Brubaker BS, Bashford A Jr, Healy EW (1997) Spectral restoration of speech: intelligibility is increased by inserting noise in spectral gaps. Percept Psychophys 59:275–283.

    CAS  PubMed  Google Scholar 

  • Watkins AJ (1988) Spectral transitions and perceptual compensation for effects of transmission channels. Proceedings of Speech ‘88: 7th FASE Symposium, Institute of Acoustics, pp. 711–718.

    Google Scholar 

  • Watkins AJ (1991) Central, auditory mechanisms of perceptual compensation for spectral-envelope distortion. J Acoust Soc Am 90:2942–2955.

    CAS  PubMed  Google Scholar 

  • Watkins AJ, Makin SJ (1994) Perceptual compensation for speaker differences and for spectral-envelope distortion. J Acoust Soc Am 96:1263–1282.

    CAS  PubMed  Google Scholar 

  • Watkins AJ, Makin SJ (1996) Effects of spectral contrast on perceptual compensation for spectral-envelope distortion. J Acoust Soc Am 99:3749–3757.

    CAS  PubMed  Google Scholar 

  • Webster JC (1983) Applied research on competing messages. In: Tobias JV, Schubert ED (eds) Hearing Research and Theory, vol. 2. New York: Academic Press, pp. 93–123.

    Google Scholar 

  • Wegel RL, Lane CL (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285.

    Google Scholar 

  • Young K, Sackin S, Howell P (1993) The effects of noise on connected speech: a consideration for automatic processing. In: Cooke M, Beet S, Crawford M (eds) Visual Representations of Speech. Chichester: John Wiley.

    Google Scholar 

  • Yost WA, Dye RH, Sheft S (1996) A simulated “cocktail party” with up to three sound sources. Percept Psychophys 58:1026–1036.

    CAS  PubMed  Google Scholar 

  • Zahorian SA, Jagharghi AJ (1993) Spectral-shape features versus formants as acoustic correlates for vowels. J Acoust Soc Am 94:1966–1982.

    CAS  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Assmann, P., Summerfield, Q. (2004). The Perception of Speech Under Adverse Conditions. In: Speech Processing in the Auditory System. Springer Handbook of Auditory Research, vol 18. Springer, New York, NY. https://doi.org/10.1007/0-387-21575-1_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-21575-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00590-4

  • Online ISBN: 978-0-387-21575-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics