Skip to main content

High Lattice Thermal Conductivity Solids

  • Chapter
High Thermal Conductivity Materials

Abstract

The lattice thermal conductivity κ of various classes of crystalline solids is reviewed, with emphasis on materials with κ > 0.5Wcm−1K−1. A simple model for the magnitude of the lattice thermal conductivity at temperatures near the Debye temperature is presented and compared to experimental data on rocksalt, zincblende, diamond, and wurtzite structure compounds, graphite, silicon nitride and related materials, and icosahedral boron compounds. The thermal conductivity of wide-band-gap Group IV and Group III-V semiconductors is discussed, and the enhancement of lattice thermal conductivity by isotopic enrichment is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Slack, Solid St. Phys. 34, 1 (1979); G. A. Slack, J. Phys. Chem. Solids 34, 321 (1973).

    Article  Google Scholar 

  2. P. G. Klemens, Solid St. Phys. 7, 1 (1958).

    Article  Google Scholar 

  3. R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976).

    Google Scholar 

  4. K. Watari and S. L. Shinde, Eds. Mat. Res. Soc. Bull. 26, 440 (2001).

    Google Scholar 

  5. S. Pettersson, J. Phys. C: Solid St. Phys. 20, 1047 (1987).

    Article  ADS  Google Scholar 

  6. C. Domb and L. Salter, Phil. Mag. 43, 1083 (1952).

    Google Scholar 

  7. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  ADS  MATH  Google Scholar 

  8. G. Leibfried and E. Schlömann, Nachr. Akad. Wiss. Göttingen II a (4), 71 (1954).

    Google Scholar 

  9. C. L. Julian, Phys. Rev. 137, A128 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  10. O. L. Anderson, J. Phys. Chem. Solids 12, 41 (1959).

    Article  ADS  Google Scholar 

  11. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B 43, 5024 (1991).

    Article  ADS  Google Scholar 

  12. P. Pavone, K. Karch, O. Schütt, W. Windl, D. Strauch, P. Giannozzi, and S. Baroni, Phys. Rev. B 48, 3156 (1993).

    Article  ADS  Google Scholar 

  13. G. Kern, G. Dresse, and J. Hafner, Phys. Rev. B 59, 8551 (1999).

    Article  ADS  Google Scholar 

  14. Calculated from the data of G. A. Slack and S. F. Bartram, J. Appl. Phys. 46, 89 (1975) and C. F. Cline, J. L. Dunegan, and G. W. Henderson, J. Appl. Phys. 38, 1944 (1967).

    Article  ADS  Google Scholar 

  15. R. N. Katz, Science 84, 208 (1980).

    Google Scholar 

  16. K. Watari, K. Hirao, M. E. Brito, M. Toriyama, and S. Kanzaki, J. Mater. Res. 14, 1538 (1999).

    Article  ADS  Google Scholar 

  17. R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1948), Vol. 2, p. 157.

    Google Scholar 

  18. A. Zerr, G. Miehe, G. Serghio, M. Schwarz, E. Kroke, R. Riedel, H. Fue, P. Kroll, and R. Boehler, Nature 400, 340 (1999).

    Article  ADS  Google Scholar 

  19. W.-Y. Ching, Y.-N. Xu, J. D. Gale, and M. Rühle, J. Am. Cer. Soc. 81, 3189 (1998).

    Article  Google Scholar 

  20. J. Z. Jiang, H. Lindelov, L. Gerward, K. Stahl, J. M. Recio, P. Mori-Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch, and D. J. Frost, Phys. Rev. B 65, 161202 (2002).

    Article  ADS  Google Scholar 

  21. H. He, T. Sekine, T. Kobayashi, and H. Hirosaki, Phys. Rev. B 62, 11412 (2000).

    Article  ADS  Google Scholar 

  22. R. J. Bruls, H. T. Hintzen, G. de With, R. Metselaar, and J. C. van Miltenburg, J. Phys. Chem. Sol. 62, 783 (2001).

    Article  ADS  Google Scholar 

  23. G. A. Slack and I. C. Huseby, J. Appl. Phys. 53, 6817 (1982).

    Article  ADS  Google Scholar 

  24. Z. P. Chang and G. R. Barsch, J. Geophys. Res. 78, 2418 (1973).

    Article  ADS  Google Scholar 

  25. G. Serghiou, G. Miehe, O. Tschauner, A. Zerr, and R. Boehler, J. Chem. Phys. 111, 4659 (1999).

    Article  ADS  Google Scholar 

  26. J. Dong, O. F. Sankey, S. K. Deb, G. Wolf, and P. F. McMillan, Phys. Rev. B 61, 11979 (2000).

    Article  ADS  Google Scholar 

  27. D. Teter and R. J. Hemley, Science 271, 53 (1996).

    Article  ADS  Google Scholar 

  28. A. Y. Liu and R. M. Wentzcovitch, Phys. Rev. B 50, 10362 (1994).

    Article  ADS  Google Scholar 

  29. A. Y. Liu and M. L. Cohen, Science 245, 841 (1989).

    Article  ADS  Google Scholar 

  30. J. Martin-Gil, F. J. Martin-Gil, M. Sarikayta, M. Qian, M. José-Yacamán, A. Rubio, J. Appl. Phys. 81, 2555 (1997).

    Article  ADS  Google Scholar 

  31. M. Cöté and M. L. Cohen, Phys. Rev. B 55, 5684 (1997).

    Article  ADS  Google Scholar 

  32. M. L. Cohen, Phys. Rev. B 32, 7988 (1985).

    Article  ADS  Google Scholar 

  33. C. Niu, Y. Z. Lu, and C. M. Lieber, Science 261, 334 (1993).

    Article  ADS  Google Scholar 

  34. K. M. Liu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu, and I. C. Wu, Phys. Rev. B 49, 5034 (1994).

    Article  ADS  Google Scholar 

  35. H. W. Song, F. Z. Cui, X. M. He, W. Z. Li, and H. D. Li, J. Phys. Cond. Matter 6, 6125 (1994).

    Article  ADS  Google Scholar 

  36. T.-Y. Yen and C.-P. Chou, Solid St. Comm. 95, 281 (1995).

    Article  ADS  Google Scholar 

  37. Y. Chen, L. Guo, and E. Wang, Phil. Mag. Lett. 75, 155 (1997).

    Article  ADS  Google Scholar 

  38. P. Ball, Nature 403, 871 (2000).

    Article  Google Scholar 

  39. www.dirac.ms.virginia.edu/∼emb3t/eos/html/final.html

    Google Scholar 

  40. P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).

    Article  ADS  Google Scholar 

  41. R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1948), Vol. 3, p. 133.

    Google Scholar 

  42. R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1948), Vol. 1, p. 19.

    Google Scholar 

  43. J. L. Hoard and R. E. Hughes, in The Chemistry of Boron and Its Compounds, ed. E. L. Muetterties (Wiley, New York, 1967), Chapter II.

    Google Scholar 

  44. D. He, Y. Zhao, L. Daemen, J. Qian, T. D. Shen, and T. W. Zerda, Appl. Phys. Lett. 81, 643 (2002).

    Article  ADS  Google Scholar 

  45. G. A. Slack, D. W. Oliver, and F. H. Horn, Phys. Rev. B 4, 1714 (1971).

    Article  ADS  Google Scholar 

  46. G. A. Slack, Phys. Rev. 139, A507 (1965).

    Article  ADS  Google Scholar 

  47. E. F. Steigmeier, Appl. Phys. Lett. 3, 6 (1963).

    Article  ADS  Google Scholar 

  48. S. Vepřek, J. Vac. Sci. Technol. 17, 2401 (1999).

    Article  ADS  Google Scholar 

  49. P. Rogl and J. C. Schuster, eds., Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems (ASM International, Metals Park, OH, 1992).

    Google Scholar 

  50. R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1948), Vol. 1, p. 27.

    Google Scholar 

  51. B. T. Kelly, in Chemistry and Physics of Carbon, ed. P. L. Walker, Jr. (Marcel Dekker, New York, 1969), Vol. 5, p. 119.

    Google Scholar 

  52. B. T. Kelly, Physics of Graphite (Applied Science Publishers, London, 1981).

    Google Scholar 

  53. G. A. Slack, Phys. Rev. 127, 694 (1962).

    Article  ADS  Google Scholar 

  54. C. A. Klein and M. G. Holland, Phys. Rev. 136, A575 (1964).

    Article  ADS  Google Scholar 

  55. M. G. Holland, C. A. Klein, and W. B. Straub, J. Phys. Chem. Solids 27, 903 (1966).

    Article  ADS  Google Scholar 

  56. A. de Combarieu, J. Phys. (France) 28, 931 (1968).

    Google Scholar 

  57. D. T. Morelli and C. Uher, Phys. Rev. B 31, 6721 (1985).

    Article  ADS  Google Scholar 

  58. K. Komatsu, J. Phys. Soc. Japan 10, 346 (1955).

    Article  ADS  Google Scholar 

  59. M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V. Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, Phys. Rev. B 56, 9431 (1997).

    Article  ADS  Google Scholar 

  60. D. T. Morelli, J. P. Heremans, and G. A. Slack, Phys. Rev. B 66, 195304 (2002).

    Article  ADS  Google Scholar 

  61. J. A. Krumhansl and H. Brooks, J. Chem. Phys. 21, 1663 (1953).

    Article  ADS  Google Scholar 

  62. R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1948), Vol. 1, p. 184.

    Google Scholar 

  63. A. Simpson and A. D. Stuckes, J. Phys. C 4, 1710 (1971).

    Article  ADS  Google Scholar 

  64. H. Morkoç, Nitride Semiconductors and Devices (Springer Verlag, New York, 1999).

    Google Scholar 

  65. G. A. Slack, J. Appl. Phys. 35, 3460 (1964).

    Article  ADS  Google Scholar 

  66. E. A. Burgemeister, W. von Muench, and E. Pettenpaul, J. Appl. Phys. 50, 5790 (1979).

    Article  ADS  Google Scholar 

  67. D. T. Morelli, J. P. Heremans, C. P. Beetz, W. S. Yoo, and H. Matsunami, Appl. Phys. Lett. 63, 3143 (1993).

    Article  ADS  Google Scholar 

  68. St. G. Müller, R. Eckstein, J. Fricke, D. Hofmann, R. Hofmann, R. Horn, H. Mehling, and O. Nilsson, Materials Science Forum 264-8, 623 (1998).

    Article  Google Scholar 

  69. H. McD. Hobgood, R. C. Glass, G. Augustine, R. H. Hopkins, J. Jenny, M. Skowronski, W. C. Mitchel, and M. Roth, Appl. Phys. Lett. 66, 1364 (1995).

    Article  ADS  Google Scholar 

  70. C. H. Carter, Jr., M. Brady, and V. F. Tsvetkov, US Patent Number 6,218,680 (April 17, 2001).

    Google Scholar 

  71. E. K. Sichel and J. I. Pankove, J. Phys. Chem. Solids 38, 330 (1977).

    Article  ADS  Google Scholar 

  72. D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, and I. Ferguson, Appl. Phys. Lett. 77, 1464 (2000); D. Kotchetkov, J. Zou, A. A. Balandin, D. I. Florescu, and F. H. Pollak, Appl. Phys. Lett. 79, 4316 (2001).

    Article  ADS  Google Scholar 

  73. D. I. Florescu, V. M. Asnin, F. H. Pollak, R. J. Molnar, and C. E. C. Wood, J. Appl. Phys. 88, 3295 (2000).

    Article  ADS  Google Scholar 

  74. G. A. Slack, L. J. Schowalter, D. T. Morelli, and J. A. Freitas, Jr., Proc. 2002 Bulk Nitride Workshop, Amazonas, Brazil (to appear in Journal of Crystal Growth).

    Google Scholar 

  75. www.crystal-is.com

    Google Scholar 

  76. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987).

    Article  ADS  Google Scholar 

  77. A. V. Virkar, T. B. Jackson, and R. A. Cutler, J. Am. Ceram. Soc. 72, 2031 (1989).

    Article  Google Scholar 

  78. I. Pomeranchuk, J. Phys. USSR 4, 259 (1941).

    Google Scholar 

  79. G. A. Slack, Phys. Rev. 105, 829 (1957).

    Article  ADS  Google Scholar 

  80. T. H. Geballe and G. W. Hull, Phys. Rev. 110, 773 (1958).

    Article  ADS  Google Scholar 

  81. D. G. Onn, A. Witek, Y. Z. Qiu, T. R. Anthony, and W. F. Banholzer, Phys. Rev. Lett. 68, 2806 (1992).

    Article  ADS  Google Scholar 

  82. T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. Wei, P. K. Kuo, R. L. Thomas, and R. W. Pryor, Phys. Rev. B 42, 1104 (1990).

    Article  ADS  Google Scholar 

  83. J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, Phys. Rev. B 47, 14850 (1993).

    Article  ADS  Google Scholar 

  84. L. Wei, P. K. Kuo, R. L. Thomas, T. R. Anthony, and W. F. Banholzer, Phys. Rev. Lett. 70, 3764 (1993).

    Article  ADS  Google Scholar 

  85. T. Ruf, R. W. Henn, M. Asen-Palmer, E. Gmelin, M. Cardona, H.-J. Pohl, G. G. Devyatych, and P. G. Sennikov, Solid St. Commun. 115, 243 (2000).

    Article  ADS  Google Scholar 

  86. T. Ruf, R. W. Henn, M. Asen-Palmer, E. Gmelin, M. Cardona, H.-J. Pohl, G. G. Devyatych, and P. G. Sennikov, Solid St. Commun. 127, 257 (2003).

    Article  ADS  Google Scholar 

  87. K. C. Hass, M. A. Tamor, T. R. Anthony, and W. F. Banholzer, Phys. Rev. B 45, 7171 (1992).

    Article  ADS  Google Scholar 

  88. R. Berman, Phys. Rev. B 45, 5726 (1992).

    Article  ADS  Google Scholar 

  89. N. V. Novikov, A. P. Podoba, S. V. Shmegara, A. Witek, A. M. Zaitsev, A. B. Denisenko, W. R. Fahrner, and M. Werner, Diamond and Related Materials 8, 1602 (1999).

    Article  Google Scholar 

  90. P. G. Klemens, Proc. Roy. Soc. A68, 1113 (1955).

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Morelli, D.T., Slack, G.A. (2006). High Lattice Thermal Conductivity Solids. In: Shindé, S.L., Goela, J.S. (eds) High Thermal Conductivity Materials. Springer, New York, NY. https://doi.org/10.1007/0-387-25100-6_2

Download citation

Publish with us

Policies and ethics