Skip to main content

Information Processing by the Lateral Line System

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

This review covers four areas of research that have fruitfully contributed to our understanding of lateral line function within the past 10 years. One striking aspect of the lateral line system is its tremendous diversity. Recent findings, however, indicate a functional constancy that may be maintained by relatively subtle morphological features. Other morphological variations have been shown to enhance sensitivity at particular frequency bandwidths. A second area of research has focused on hydrodynamic imaging and the peripheral patterns of receptor excitation that might encode stimulus features such as amplitude, distance, location, and direction of motion. A detailed model is described and provides several predictions for the types of information passed from the periphery to the central nervous system (CNS).The third topic covered is the mechanisms that enhance signal detection in noisy backgrounds. It is becoming clear that canals act as biomechanical filters to improve signal-to-noise ratios in the presence of lowfrequency noises such as uniform, ambient water motions. Two central mechanisms, efferent modulation of receptor excitation and a central dynamic filter mechanism, have been shown to reduce reafference due to self-generated noise and may enhance signal detection in general. The second central mechanism is postulated to be similar to the anti-hebbian learning mechanism that has been well documented within the related electrosensory system. Finally, this review covers the recently documented roles of the lateral line system in natural behaviors, including courtship and prey capture. Some of these recent studies have led to the exciting conclusion that the lateral line may be composed of two distinct information channels, one served by canal and the other by superficial neuromasts, and that each may be dedicated to different behavioral tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdel-Latif, H., Hassan, E.S., and Campenhausen, C. von (1990). Sensory performance of blind cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, G.P. (1974). Rheotropism in fishes. Biol. Rev. 49:515–576.

    Article  PubMed  CAS  Google Scholar 

  • Assad, C., Rasnow, B., and Stoddard, P.K. (1999). Electric organ discharges and electric images during electrolocation. J. Exp. Biol. 202:1185–1193.

    PubMed  CAS  Google Scholar 

  • Baker, C.F., and Montgomery, J.C. (1999a). The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J. Comp. Physiol. A. 184:519–527.

    Article  Google Scholar 

  • Baker, C.F., and Montgomery, J.C. (1999b). Lateral line mediated rheotaxis in the antarctic fish Pagothenia borchgrevinki. Polar. Biol. 21:305–309.

    Article  Google Scholar 

  • Bell, C.C., Bodznick, D., Montgomery, J.C., and Bastian, J. (1997). The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav. Evol. 50:17–31.

    Article  PubMed  Google Scholar 

  • Bleckmann, H., Tittel, G., and Blübaum-Gronau, E. (1989). Lateral line system of surface-feeding fish: Anatomy, physiology and behavior. In: The Mechanosensory Lateral Line: Neurobiology and Evolution. (Coombs, S., Görner, P., and Münz, H., eds.), pp. 501–526. New York: Springer-Verlag.

    Google Scholar 

  • Bleckmann, H., Breithaupt, T., Blickhan, R., and Tautz, J. (1991). The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J. Comp. Physiol. A. 168:749–757.

    PubMed  CAS  Google Scholar 

  • Bodznick, D., Montgomery, J.C., and Megan, C. (1999). Adaptive mechanisms in the elasmobranch hindbrain. J. Exp. Bio. 202:1357–1364.

    Google Scholar 

  • Braun, C.B. (1995). Ecomorphological studies of lateral line systems: Phyletic versus ecological effects. Am. Zool. 35:16A.

    Google Scholar 

  • Coombs, S., and Montgomery, J.C. (1992). Fibers innervating different parts of the lateral line system of an antararctic notothenioid, Trematomus bernacchii, have similar frequency responses, despite large variation in the peripheral morphology. Brain Behav. Evol. 40:217–233.

    Article  PubMed  CAS  Google Scholar 

  • Coombs, S., and Montgomery, J.C. (1994a). Function and evolution of superficial neuromasts in an antarctic notothenioid fish. Brain Behav. Evol. 44:287–298.

    Article  PubMed  CAS  Google Scholar 

  • Coombs, S., and Montgomery, J.C. (1994b). Structural diversity in the lateral line system of antarctic fish: Adaptive or non-adaptive? Sensornye Sistemy (Sensory Systems) 8:42–52.

    Google Scholar 

  • Coombs, S., and Montgomery, J.C. (1999). The enigmatic lateral line system. In: Comparative Hearing: Fishes and Amphibians (Popper, A.N., Fay, R.R. eds.), pp. 319–362. New York: Springer-Verlag.

    Google Scholar 

  • Coombs, S., Braun, C.B., and Donovan, B. (2000a). Orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J. Exp. Biol. (in press).

    Google Scholar 

  • Coombs, S., Finneran, J., and Conley, R. (2000b). Hydrodynamic imaging by the lateral line system of the Lake Michigan mottled sculpin. Phil. Trans. Roy. Soc. (Lond.) 355:1111–1114.

    Article  CAS  Google Scholar 

  • Coombs, S., Hastings, M., and Finneran, J. (1996). Modeling and measuring lateral line excitation patterns to changing dipole source locations. J. Comp. Physiol. 178:359–371.

    Article  CAS  Google Scholar 

  • Coombs, S., Janssen, J., and Webb, J.C. (1988). Diversity of lateral line systems: Evolutionary and functional considerations. In: Sensory Biology of Aquatic Animals (Atema, J., Fay, R.R., Popper, A.N., and Tavolga, W.N., eds.), pp. 553–594. New York: Springer-Verlag.

    Google Scholar 

  • Denton, E.J., and Gray, J.A.B. (1983). Mechanical factors in the excitation of clupeid lateral lines. Proc. Roy. Soc. Lond. B. 218:1–26.

    Article  CAS  Google Scholar 

  • Denton, E.J., and Gray, J.A.B. (1988). Mechanical factors in the excitation of the lateral line of fishes. In: Sensory Biology of Aquatic Animals (Atema, J., Fay, R.R., Popper, A.N., and Tavolga, W.N., eds.), pp. 595–618. New York: Springer-Verlag.

    Google Scholar 

  • Denton, E.J., and Gray, J.A.B. (1989). Some observations on the forces acting on neuromasts in fish lateral line canals. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 229–246. New York: Springer-Verlag.

    Google Scholar 

  • Dijkgraaf, S. (1963). The functioning and significance of the lateral-line organs. Biol. Rev. 38:51–105.

    Article  PubMed  CAS  Google Scholar 

  • Englemann, J., Hanke, W., Mogdans, J., and Bleckmann, H. (2000). Hydroynamic stimuli and the fish lateral line. Nature 408:51–52.

    Article  CAS  Google Scholar 

  • Gray, J. (1984). Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats. Proc. R. Soc. Lond. B. 220:299–325.

    Google Scholar 

  • Gray, J.A.B., and Best, A.C.G. (1989). Patterns of excitation of the lateral line of the ruffe. J. Mar. Biol. Assn. UK 69:289–306.

    Google Scholar 

  • Hanke, W., Brücker, C., and Bleckmann, H. (2000). The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J. Exp. Bio. 203: 1193–1200.

    CAS  Google Scholar 

  • Hassan, E.-S. (1985). Mathematical analysis of the stimulus for the lateral line organ. Biol. Cybern. 52:23–36.

    Article  PubMed  CAS  Google Scholar 

  • Hassan, E.-S. (1992a). Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis. I. The case of moving in open water and of gliding towards a plane surface. Biol. Cybern. 66:443–452.

    Article  Google Scholar 

  • Hassan, E.-S. (1992b). Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis. II. The case of gliding alongside or above a plane surface. Biol. Cybern. 66:453–461.

    Article  Google Scholar 

  • Hassan, E.-S. (1993). Mathematical description of the stimuli to the lateral line system of fish, derived from a 3-dimensional flow field analysis. III. The case of an oscillating sphere near the fish. Biol. Cybern. 69:525–538.

    Google Scholar 

  • Harvey, P.H., and Pagel, M.D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.

    Google Scholar 

  • Hoekstra, D., and Janssen, J. (1985). Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ. Biol. Fishes 12:111–117.

    Article  Google Scholar 

  • Honkanen, T. (1993). Comparative study of the lateral-line system of the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius). Acta Zool. (Stockholm) 74:331–336.

    Article  Google Scholar 

  • Jakubowski, M. (1966). Cutaneous sense organs of fishes. III. The lateral line organs in some Cobitidae. Acta Biol. (Krakow) 9:71–84.

    Google Scholar 

  • Janssen, J. (1990). Localization of substrate vibrations by the mottled sculpin (Cottus bairdi). Copeia 1990:349–355.

    Article  Google Scholar 

  • Janssen, J. (1996). Use of the lateral line and tactile senses in feeding in four antarctic nototheniid fishes. Environ. Biol. Fishes 47:51–64.

    Article  Google Scholar 

  • Janssen, J. (1997). Comparison of response distance to prey via the lateral line in the ruffe and yellow perch. J. Fish Biol. 51:921–930.

    Article  Google Scholar 

  • Janssen, J., and Corcoran, J. (1993). Lateral line stimuli can override vision to determine sunfish strike trajectory. J. Exp. Biol. 176:299–305.

    PubMed  CAS  Google Scholar 

  • Janssen, J., and Corcoran, J. (1998). Distance determination via the lateral line in the mottled sculpin. Copeia 1998:657–662.

    Article  Google Scholar 

  • Janssen, J., Sideleva, V., and Biga, H. (1999). Use of the lateral line for feeding in two Lake Baikal sculpins. J Fish Biol. 54:404–416.

    Article  Google Scholar 

  • Kalmijn, A.J. (1988). Hydrodynamic and acoustic field detection. In: Sensory Biology of Aquatic Animals (Atema, J., Fay, R.R, Popper, A.N., and Tavolga, W.N., eds.), pp. 83–130. New York: Springer-Verlag.

    Google Scholar 

  • Kalmijn, A.J. (1989). Functional evolution of lateral line and inner ear sensory systems. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 187–216. New York: Springer-Verlag.

    Google Scholar 

  • Kanter, M., and Coombs, S. (2000). Lateral-line mediated detection of artificial prey in the presence of background flow by Lake Michigan mottled sculpin (Cottus bairdi). Neurosci. Abst. 26:146.

    Google Scholar 

  • Kroese, A.B.A., and Schellart, N.A.M. (1992). Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J. Neurophysiol. 68:2212–2221.

    PubMed  CAS  Google Scholar 

  • Liang, X.F., Liu, J.K., and Huang, B.Y. (1998). The role of sense organs in the feeding behavior of Chinese perch. J. Fish Biol. 52:1058–1067.

    Article  Google Scholar 

  • Lyon, E.P. (1904). On rheotropism: I. Rheotropism in fishes. Am. J. Physiol. 12:149–161.

    Google Scholar 

  • MacDowall, R.M. (1997). An accessory lateral line in some New Zealand and Australiangalaxiids(Teleostei: Galaxiidae). Ecol. Freshw. Fish. 6:217–224.

    Article  Google Scholar 

  • Marshall, N.J. (1996). The lateral line systems of three deep-sea fish. J. Fish Biol. 49(supplement A): 239–258.

    Article  Google Scholar 

  • Mohr, C., and Bleckmann, H. (1998). Electrophysiology of the cephalic lateral line of the surfacefeeding fish Aplocheilus lineatus. Comp. Biochem. Physiol. 119A: 807–815.

    CAS  Google Scholar 

  • Montgomery, J.C., and Bodznick, D. (1994). An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci. Lett. 174:145–148.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, J.C., and Coombs, S. (1998). Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator. J. Exp. Biol. 201(1):91–102.

    Google Scholar 

  • Montgomery, J.C., and Macdonald, J.A. (1987). Sensory tuning of lateral line receptors in Antarctic fish to the movements of planktonic prey. Science 235:195–196.

    Article  PubMed  Google Scholar 

  • Montgomery, J.C., Baker, C.F., and Carton, A.G. (1997). The lateral line can mediate rheotaxis in fish. Nature 389:960–963.

    Article  CAS  Google Scholar 

  • Montgomery, J., Bodznick, D., and Halstead, M. (1996). Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scorpaena papillosus. J. Exp. Biol. 199:893–899.

    PubMed  Google Scholar 

  • Montgomery, J.C., Coombs, S., and Janssen, J. (1994). Form and function relationships in lateral line systems: Comparative data from six species of antarctic notothenioid fish. Brain. Behav. Evol. 44:299–306.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, J.C., Coombs, S., Conley, R.A., and Bodznick, D. (1995). Hindbrain sensory processing in lateral line, electrosensory and auditory systems: A comparative overview of anatomical and functional similarities. Audit. Neurosci. 1:207–231.

    Google Scholar 

  • Münz, H. (1989). Functional organization of the lateral line periphery. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 285–298. New York: Springer-Verlag.

    Google Scholar 

  • New, J.G., and Kang, P.Y. (2000). Multimodal sensory integration in the strike-feeding behavior of predatory fishes. Phil. Trans. Roy. Soc. (Lond.) B. 355:1321–1324.

    Article  CAS  Google Scholar 

  • New, J.G., Fewkes, L.A., and Khan, A.N. (2001). Strike-feeding behavior in the muskellunge Esox masquinongy: Contributions of lateral line and visual sensory systems. J. Exp. Biol. 204:1207–1221.

    PubMed  CAS  Google Scholar 

  • Partridge, B., and Pitcher, T.J. (1980). The sensory basis of fish schools: Relative roles of lateral line and vision. J. Comp. Physiol. 135:315–325.

    Article  Google Scholar 

  • Rasnow, B., and Bower, J.M. (1997). Imaging with Electricity: How weakly electric fish might perceive objects. In: Computational Neuroscience: Trends in Research (Bower, J.M., ed.), Plenum Press, NY. pp. 795–800.

    Google Scholar 

  • Roberts, B.L., and Meredith, G.E. (1989). The efferent system. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Gorner, P., and Munz, H., eds.), pp. 445–459. New York, Berlin: Springer-Verlag.

    Google Scholar 

  • Sargent, R.C., Rush, V.N., Wisenden, B.D., and Yan, H.Y. (1998). Courtship and mate choice in fishes: Integrating behavioral and sensory ecology. Am. Zool. 38:82–96.

    Google Scholar 

  • Satou, M. (1987). A neuroethological study of reproductive behavior in the salmon. Third International Symposium on the Reproductive Physiology of Fish, pp. 154–159. St. Johns, Newfoundland, Canada.

    Google Scholar 

  • Satou, M., Takeuchi, H.A., Takei, K., Hasegawa, T., Matsushima, T., and Okumoto, N. (1994a). Characterization of vibrational and visual signals which elicit spawning behavior in the male himé salmon (landlocked red salmon, Oncorhynchus nerka). J. Comp. Physiol. 174:527–537.

    Google Scholar 

  • Satou, M., Takeuchi, H., Takei, K., Hasegawa, T., Okumoto, N., and Ueda, K. (1987). Involvement of vibrational and visual cues in eliciting spawning behavior in male himé salmon (landlocked red salmon, Oncorhynchus nerka). Anim. Behav. 35: 1556–1584.

    Article  Google Scholar 

  • Satou, M., Takeuchi, H.A., Nishii, J., Tanabe, M., Kitamura, S., Kudo, Y., and Okumoto, N. (1991). Intersexual vibrational communication during spawning behavior in the himé salmon (landlocked red salmon, Oncorhynchus nerka). Fourth International Symposium on the Reproductive Physiology of Fish, pp. 185–187. University of East Anglia, Norwich, U.K.

    Google Scholar 

  • Satou, M., Takeuchi, H.A., Nishii, J., Tanabe, M., Kitamura, S., Okumoto, N, and Iwata, M. (1994b). Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). J. Comp. Physiol. 174:539–549.

    Google Scholar 

  • Song, J., Yan, H.Y., and Popper, A.N. (1995). Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear. Res. 91:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, H., Takei, K., Satou, M., Matsushima, T., Okumoto, N., and Ueda, K. (1987). Visual cues as key stimuli for courtship behavior in male himé salmon (landlocked red salmon, Oncorhynchus nerka). Anim. Behav. 35:936–939.

    Article  Google Scholar 

  • Tinbergen, N. (1951). The Study of Instinct. Oxford: Clarendon Press.

    Google Scholar 

  • Tricas, T.C., and Highstein, S.M. (1991). Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. J. Comp. Physiol. 169:25–37.

    Article  CAS  Google Scholar 

  • van Netten, S.M. (1991). Hydrodynamics of the excitation of the cupula in the fish canal lateral line. J. Acoust. Soc. Am. 89:310–319.

    Article  Google Scholar 

  • van Netten, S.M., Kroese, A.B.A. (1987). Laser interferometric measurements on the dynamic behavior of the cupula in the fish lateral line. Hear. Res. 29:55–61.

    Article  PubMed  Google Scholar 

  • van Netten, S.M., and Kroese, A.B.A. (1989). Dynamical behavior and micromechanical properties of the cupula. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 247–264. New York: Springer-Verlag.

    Google Scholar 

  • Vischer, H.A. (1990). The morphology of the lateral line system in three species of Pacific cottid fishes occupying disparate habitats. Experientia 46: 244–250.

    Article  Google Scholar 

  • von der Emde, G.S., Schwarz, L., Gomez, L., Budelli, R., and Grant, K. (1998). Electric fish measure distance in the dark. Nature 395:890–894.

    Article  PubMed  CAS  Google Scholar 

  • Weissburg, M.J. (2000). The fluid dynamical context of chemosensory behavior. Biol. Bull. 198: 188–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Coombs, S., Braun, C.B. (2003). Information Processing by the Lateral Line System. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics