Skip to main content

The Potential Role of Mycorrhizae in the Growth and Establishment of Juniperus Seedlings

  • Chapter
Western North American Juniperus Communities

Part of the book series: Ecological Studies ((ECOLSTUD,volume 196))

Approximately 95% of all terrestrial plant families have species that have mycorrhizal associations (Trappe 1987). The relationships are usually symbiotic, and typically mutualistic, but can also be parasitic (Allen 1991; Allen et al. 2003). The three most common types of mycorrhizae are the orchid mycorrhizae, arbuscular mycorrhizae (AM), and ectomycorrhizae (EM). There are distinct characteristics for fungi that can be defined as mycorrhizal: (1) the fungal hypha extends into a root or rhizoid and outward into the surrounding substrate, (2) the fungi acquire carbon from a host, and, in the case of mutualism, (3) the fungi provide soil resources to the host plant (Allen et al. 2003). Arbuscular mycorrhizae are a monophyletic group known as the Glomales, which contains six genera (Schwarzott et al. 2001). Ectomycorrhizae are found in three different fungal groups: Zygomycetes, Ascomycetes, and Basidiomyctes (Allen et al. 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alguacil, M., Caravaca, F., Díaz-Vivancos, P., Hernández, J., and Roldán, A. 2006. Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant Soil 279:209–218.

    Article  CAS  Google Scholar 

  • Allen, E.B., and Allen, M.F. 1986. Water relationships of xeric grasses in the field: interactions of mycorrhizas and competition. New Phytol. 104:559–571.

    Article  Google Scholar 

  • Allen, E.B., and Allen, M.F. 1990. The mediation of competition by mycorrhizae in successional and patchy environments. In: Perspectives on plant competition, eds. J.B. Grace and D. Tilman, pp 367–389. New York: Academic Press.

    Google Scholar 

  • Allen, E.B., Allen, M.F., Helm, D.J., Trappe, J.M., Molina, R., and Rincon, E. 1995. Patterns and regulation of mycorrhizal plant and fungal diversity. In: The significance and regulation of soil diversity, eds. G.P. Robertson and M.J. Klug, pp 47–62. Amsterdam: Kluwer.

    Google Scholar 

  • Allen, M.F. 1982. Influence of vesicular arbuscular mycorrhizae on water movement through Bouteloua gracilis. New Phytol. 91:191–196.

    Article  Google Scholar 

  • Allen, M.F. 1991. The ecology of mycorrhizae. Cambridge: Cambridge University Press.

    Google Scholar 

  • Allen, M.F., Allen, E.B., and Friese, C.F. 1989. Responses of the non mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol. 111:45–49.

    Article  Google Scholar 

  • Allen, M.F., Swenson, W., Querejeta, J.I., Egerton-Warburton, L.M., and Treseder, K.K. 2003. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu. Rev. Phytopathol. 41:271–303.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, C.P., Markhart, A.H., Dixon, R.K., and Sucoff, E.I. 1988. Root hydraulic conductivity of vesicular-arbuscular mycorrhizal green ash seedlings. New Phytol. 109:465–471.

    Article  Google Scholar 

  • Auge, R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42.

    Article  Google Scholar 

  • Bakker, M.R., Garbaye, J., and Nys, C. 2000. Effect of liming on the ecotymycorrhizal status of oak. For. Ecol. Manag. 126:121–131.

    Article  Google Scholar 

  • Baskin, J.M., and Baskin, C.C. 1986. Distribution and geographical/evolutionary relationship of cedar glade endemics in southeastern United States. Assoc. Southeast. Biol. Bull. 33:138–154.

    Google Scholar 

  • Beckjord, P.R., Melhuish, J.H., Jr., McIntosh, M.S., and Hacskaylo, E. 1983. Effects of nitrogen fertilization on growth and ectomycorrhizal formation of Quercus alba, Q. rubra, Q. falcata, and Q. falcata var. pagodifolia. Can. J.Bot. 61:2507–2514.

    Google Scholar 

  • Beckjord, P.R., Melhuish, J.H., Jr., and McIntosh, M.S. 1985. Effects of nitrogen and phosphorus fertilization on growth and formation of ectomycorrhizae of Quercus alba and Q. rubra seedlings by Pisolithus tinctorius and Scleroderma auranteum. Can. J.Bot. 63:1677–1680.

    Google Scholar 

  • Bergero, R., Perotto, S., Girlanda, M., Vidano, G., and Luppi, A.M. 2000. Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol. Ecol. 9:1639–1649.

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum, S.J., Borowski, F., and J.W. Wireman. 1989. Silica precipitation induced by the sulfate reducing bacterium Desulfovibrio desulfuricans: effects upon cell morphology and implications for preservation. In: Origin, evolution, and modern aspects of biomineralization in plants and animals, ed. R.W. Crick, pp 507–516. New York: Plenum.

    Google Scholar 

  • Böhm, W. 1979. Methods of studying root systems. In: Ecological studies, vol.33, eds. W.D. Billings, F. Golley, O.L. Lange, and J.S. Olson, pp 1–188. New York: Springer-Verlag.

    Google Scholar 

  • Bray, W.L. 1904. The timber of the Edwards Plateau of Texas: its relation to climate, water supply, and soil. Bulletin 47. Washington, DC: United States Department of Agriculture, Bureau of Foresty.

    Google Scholar 

  • Brownlee, C., Duddrige, J.A., Mailbari, A., and Read, D.J. 1983. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in assimilate and water transport. Plant Soil 71:433–443.

    Article  Google Scholar 

  • Buechner, G.K. 1944. The range vegetation of Kerr County, Texas, in relation to livestock and white-tailed deer. Am. Midl. Nat. 31:697–743.

    Article  Google Scholar 

  • Callaway, R.M., Nadkarni, J.M., and Mahall, B.E. 1991. Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology 72:1484–1499.

    Article  Google Scholar 

  • Clark, R.B., and Zeto, S.K. 2000. Mineral acquisition by arbuscular mycorrhizal plants. J.Plant Nutr. 23:867–902.

    Article  CAS  Google Scholar 

  • Cress, W.A., Throneberry, G.D., and Lindsey, D.L. 1979. Kinetics of phosphorous absorption by mycorrhizal and nonmycorrhizal tomato roots. Plant Physiol. 64:484–487.

    Article  CAS  PubMed  Google Scholar 

  • Cuenca, G., and Lovera, M. 1991. Vesicular-arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Saban, Venezuela. Can. J.Bot. 70:73–79.

    Article  Google Scholar 

  • Cui, M., and Nobel, P.S. 1992. Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol. 122:643–649.

    CAS  Google Scholar 

  • Daughtridge, A.T., Pallardy, S.G., Garrett, H.G., and Sander, I.L. 1986. Growth analysis of mycorrhizal and nonmycorrhizal black oak (Quercus velutina Lam.) seedlings. New Phytol. 103:473–480.

    Article  Google Scholar 

  • Davies, F.T.J., Potter, J.R., and Linderman, R.G. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J.Plant Physiol. 139:289–294.

    Google Scholar 

  • Dickie, I.A., Koide, R.T., and Fayish, A.C. 2001. Vesicular-arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytol. 151:257–264.

    Article  Google Scholar 

  • Egerton-Warburton, L., and Allen, M. 2001. Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290.

    Article  Google Scholar 

  • Egerton-Warburton, L.M., Graham, R.C., and Hubbert, K.R. 2003. Spatial variability and water availability in a soil-weathered bedrock profile. Plant Soil 249:331–342.

    Article  CAS  Google Scholar 

  • Faber, B.A., Zasoski, R.J.Z., and Munns, D.N. 1991. A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can. J. Bot. 69:87–94.

    Google Scholar 

  • Fitter, A.H. 1977. Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol. 79:119–125.

    Article  CAS  Google Scholar 

  • Fonteyn, P.J., McClean, T.M., and Akridge, R.E. 1985. Xylem pressure potentials of three dominant trees of the Edwards Plateau of Texas. Southwest. Nat. 30:141–146.

    Article  Google Scholar 

  • Gilman, E.F. 2001. Effect of nursery production method, irrigation, and inoculation with mycorrhizae-forming fungi on establishment of Quercus virginiana. J.Arbor. 27:30–39.

    Google Scholar 

  • Giovannetti, M., and Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84:489–500.

    Article  Google Scholar 

  • Gordon, D.R., and Rice, K.J. 1993. Competitive effects of grassland annuals on soil water and blue oak (Quercus douglasii) seedlings. Ecology 74:68–82.

    Article  Google Scholar 

  • Gould, F.W. 1969. Texas plants: a checklist and ecological summary. Bulletin MP-585. College Station: Texas Agricultural Experiment Station.

    Google Scholar 

  • Graham, J.H., Leonard, R.T., and Menge, J.A. 1981. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol. 68:548–552.

    Article  CAS  PubMed  Google Scholar 

  • Graham, J.H., Eissenstat, D.M., and Drouillard, D.L. 1991. On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct. Ecol. 5:773–779.

    Article  Google Scholar 

  • Grand, L.F. 1969. A beaded endotrophic mycorrhiza of northern and southern red oak. Mycologia 61:408–109.

    Article  Google Scholar 

  • Hall, I.R. 1978. Effects of endomycorrhizas on the competitive ability of white clover. N.Z.J. Agric. Res. 21:509–515.

    Google Scholar 

  • Hardie, K. 1985. The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal fungi. New Phytol. 153:335–344.

    Google Scholar 

  • Harley, J.L., and Smith, S.E. 1983. Mycorrhizal symbiosis. New York: Academic Press.

    Google Scholar 

  • Hartnett, D.C., Hetrick, B.A.D., Wilson, G.W.T., and Gibson, D.J. 1993. Mycorrhizal influence on intra- and interspecific neighbor interactions among co-occurring prairie grasses. J.Ecol. 81:787–795.

    Article  Google Scholar 

  • Haskins, K.E., and Gehring, C.A. 2004. Long-term effects of burning slash on plant communities and arbuscular mycorrhizae in a semi-arid woodland. J. Appl. Ecol. 41:379–388.

    Article  Google Scholar 

  • Hatch, S.L., Gandi, K.N., and Brown, L.E. 1990. Checklist of the vascular plants of Texas. Publication MP-1655. College Station, TX: Texas A & M University System, Texas Agricultural Experiment Station.

    Google Scholar 

  • Hetrick, B.A.D., Wilson, G.T., Kitt, D.G.K., and Schwab, A.P. 1988. Effects of soil microorganisms on mycorrhizal contribution to growth of big bluestem grass in non-sterile soil. Soil Biol. Biochem. 20:501–507.

    Article  Google Scholar 

  • Hetrick, B.A.D., Hartnett, D.C., Wilson, G.W.T., and Gibson, D.J. 1994. Effects of mycorrhizae, phosphorus availability, and plant density on yield relationships among competing tallgrass prairie species. Can. J.Bot. 72:168–176.

    Article  Google Scholar 

  • Hodge, A. 2003. Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol. 157:303–314.

    Article  Google Scholar 

  • Ibrahim, M.A., Campbell, W.F.C., Rupp, L.A., and Allen, E.B. 1990. Effects of mycorrhizae on sorghum growth, photosynthesis, and stomatal conductance under drought conditions. Arid Soil Res. Rehabil. 4:99–107.

    Google Scholar 

  • Klopatek, J.M. 1987. Nitrogen mineralization and nitrification in mineral soils of pinyon-juniper ecosystems. Soil Sci. Soc. Am. J.51:453–457.

    CAS  Google Scholar 

  • Kothari, S.K., Marschner, H., and George, E. 1990. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. 116:303–311.

    Article  Google Scholar 

  • Landhäusser, S.M., Muhsin, T.M., and Zwiazek, J.J. 2002. The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can. J.Bot. 80:684–689.

    Article  Google Scholar 

  • Liu, A., Hamel, C., Hamiliton, R.I., Ma, B.L., and Smith, D.L. 2000. Acquisition of Cu, Zn, Mn, and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336.

    Article  CAS  Google Scholar 

  • Maestre, F.T., Bautista, S., Cortina, J., Diaz, G., Honrubia, M., and Vallejo, R. 2002. Microsite and mycorrhizal inoculum effects on the establishment of Quercus coccifera in a semi-arid degraded steppe. Ecol. Eng. 19:289–295.

    Article  Google Scholar 

  • Maronek, D.N., Hendrix, J.W.H., and Kiernan, J.1980. Differential growth response to the mycorrhizal fungus Glomus fasiculatum of Southern magnolia and Bar Harbor juniper grown in containers in composed hardwood bark-shale. J. Am. Soc. Hortic. Sci. 105:206–208.

    Google Scholar 

  • Marschner, H., and Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102.

    CAS  Google Scholar 

  • Marulanda, A., Azcon, R., and Ruiz-Lozano, J.M. 2003. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol. Plant. 119:526–533.

    Article  CAS  Google Scholar 

  • McPherson, G.R., and Wright, H.A. 1989. Direct effects of competition on individual juniper plants: a field study. J. Appl. Ecol. 26:979–988.

    Article  Google Scholar 

  • Menge, J.A., Steirle, D., Bagyaraj, D.J., Johnson, E.L.V., and Leonard, R.T. 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80:575–578.

    Article  CAS  Google Scholar 

  • Michelsen, A., and Rosendahl, S. 1990. The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlings. Plant Soil 124:7–13.

    Article  CAS  Google Scholar 

  • Miller, P.M., Eddleman, L.W., and Miller, J.M. 1991. The response of juvenile and small adult western juniper (Juniperus occidentalis) to nitrate and ammonium fertilization. Can. J.Bot. 69:2344–2352.

    Article  Google Scholar 

  • Miller, R.F., and Wigand, P.W. 1994. Holocene changes in semiarid pinyon-juniper woodlands. BioScience 44:465–474.

    Article  Google Scholar 

  • Mitchell, J., Cox, S., Dixon, K., Garrett, E., and Sander, L. 1984. Inoculation of three Quercus spcies with eleven isolates of ectomycorrhizal fungi. II. Foliar nutrient content and isolate effectiveness. For. Sci. 30:563–572.

    Google Scholar 

  • Molina, R., and Trappe, J.M. 1992. Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Mycorrhizal functioning: an integrative plant-fungal process, ed. M. Allen, pp 357–423. New York: Chapman & Hall.

    Google Scholar 

  • Moora, M., and Zobel, M. 1996. Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia (Berl.) 108:79–84.

    Article  Google Scholar 

  • Muhsin, T.M., and Zwiazek, J.J. 2002. Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytol. 153:153–158.

    Article  Google Scholar 

  • Nelson, L.L., and Allen, M.F. 1993. Restoration of Stipa pulchra grasslands: effects of mycorrhizae and competition from Avena barbata. Restor. Ecol. 1:40–50.

    Article  Google Scholar 

  • Newman, E.I. 1966. A method of estimating the total length of root in a sample. J. Appl. Ecol. 3:139–145.

    Article  Google Scholar 

  • Newton, A.C., and Pigott, C.D. 1991. Mineral nutrition and mycorrhizal infection of seedling oak and birch. I. Nutrient uptake and the development of mycorrhizal infection during seedling establishment. New Phytol. 117:37–44.

    Article  CAS  Google Scholar 

  • Owens, M.K., and Knight, R.W. 1992. Water use on rangelands. In: Water for south Texas. CPR 5043–5046. College Station: Texas Agricultural Experiment Station.

    Google Scholar 

  • Perry, D.A., Margolis, H., Choquette, C., Molina, R., and Trappe, J.M. 1989. Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol. 112:501–511.

    Article  Google Scholar 

  • Phillips, J.M., and Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158–161.

    Article  Google Scholar 

  • Reinsvold, R.J., and Reeves, F.B. 1986. The mycorrhizae of Juniperus osteosperma: identity of the vesicular-arbuscular mycorrhizal symbiont, and resynthesis of VA mycorrhizae. Mycologia 78:108–113.

    Article  Google Scholar 

  • Roncadori, R.W. 1982. Growth of Juniperus chinensis var. sargentii as influenced by vesicular-arbuscular mycorrhizae and soil fertility. HortScience 17:917–918.

    Google Scholar 

  • Rothwell, F., Hacskaylo, E., and Fisher, D. 1983. Ecto- and endomycorrhizal fungus associations with Quercus imbricaria L. Plant Soil 71:309.

    Article  Google Scholar 

  • Ruiz-Lazano, J.M., and Azcon, R. 1995. Hyphal contributions to water uptake in mycorrhizal plants as affected by the fungal species and water stress. Physiol. Plant. 95:472–478.

    Article  Google Scholar 

  • Salisbury, F.B., and Ross, C.W. 1992. Plant physiology. Belmont, CA: Wadsworth.

    Google Scholar 

  • Sanders, F.E. 1975. The effect of foliar applied phosphate on mycorrhizal infections on onion roots. In: Endomyorrhizas, eds. F.E. Sanders, B. Moss, and P.B. Tinker, pp 261–277. London: Academic Press.

    Google Scholar 

  • Schwarzott, D., Walker, C., and Schussler, A. 2001. Glomus, the largest genus of arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol. Phylogenet. Evol. 21:190–197.

    Article  CAS  PubMed  Google Scholar 

  • Smeins, F.E., Owens, M.K., and Fuhlendorf, S.D. 1994. Biology and ecology of Ashe (blueberry) juniper. In: Juniper symposium, 1994, pp 9–24. Sonora, TX: Texas Agricultural Experiment Research Station.

    Google Scholar 

  • Smith, M.A., Wright, H.A., and Schuster, J.L. 1975. Reproductive characteristics of redberry juniper. J.Range Manag. 35:126–128.

    Article  Google Scholar 

  • Smith, S.E., and Read, D.J. 1997. Mycorrhizal symbiosis. London: Cambridge University Press.

    Google Scholar 

  • Taylor, F.B., Hailey, R.B., and Richmond, D.L. 1966. Soil survey of Bexar County, Texas. Washington, DC: United States Department of Agriculture, Soil Conservation Service.

    Google Scholar 

  • Tiedemann, A.R., and Klemmedson, J.O. 1986. Long term effects of mesquite removal on soil characteristics: I. Nutrients and bulk density. Soil Sci. Soc. Am. J.50:472–475.

    Article  CAS  Google Scholar 

  • Trappe, J.M. 1977. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu. Rev. Phytopathol. 15:203–222.

    Article  Google Scholar 

  • Trappe, J.M. 1987. Phylogenetic and ecologic aspects of mycotrophy in the Angiosperms from an evolutionary standpoint. In: Ecophysiology of VA mycorrhizal plants, ed. G.R. Safir, pp 5–25. Boca Raton: CRC Press.

    Google Scholar 

  • Van Auken, O.W. 1993. Size distribution patterns and potential population change of some dominant woody species of the Edwards Plateau Region of Texas. Tex. J.Sci. 45:199–210.

    Google Scholar 

  • Van Auken, O.W., Ford, A.L., and Allen, J.L. 1981. An ecological comparison of upland deciduous and evergreen forests of central Texas. Am. J.Bot. 68:1249–1256.

    Google Scholar 

  • Wallander, H. 2004. A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 243:168–169.

    Google Scholar 

  • Watson, G.W., von der Heide-Spavka, K.G., and Howe, V.K. 1990. Ecological significance of endo-/ectomycorrhiza in the oak sub-genus Erthrovalanus. Arbor. J.14:107–116.

    Google Scholar 

  • Wells, P.V. 1965. Scarp woodlands, transported grassland soils, and concept of grassland climate in the Great Plains Region. Science 148:246–249.

    Article  PubMed  CAS  Google Scholar 

  • West, H.M. 1996. Influence of arbuscular mycorrhizal infection on competition between Holucus lanatus and Dactylis glomerata. J.Ecol. 84:429–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bush, J.K. (2008). The Potential Role of Mycorrhizae in the Growth and Establishment of Juniperus Seedlings. In: Van Auken, O.W. (eds) Western North American Juniperus Communities. Ecological Studies, vol 196. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34003-6_6

Download citation

Publish with us

Policies and ethics