Skip to main content

Healthcare Knowledge Management: Knowledge Management in the Perinatal Care Environment

  • Chapter
Healthcare Knowledge Management

Abstract

The chapter presents four key steps in the knowledge management process: access to quality clinical data; knowledge discovery; knowledge translation; and knowledge integration and sharing. Examples are provided for each of these steps for the perinatal care clinical environment and a number of artificial intelligence tools and analyses results are described. The usefulness of this approach for clinical decision support is discussed and the chapter concludes with suggestions on knowledge integration and sharing using Web services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frize M, Solven FG, Stevenson M, Nickerson BG, Buskard R, Taylor K. Computerassisted decision support systems for patient management in an intensive care unit. In: Proceedings of Medinfo, 23–27 July, Vancouver, British Columbia, IMIA 1995; pp. 1009–1012.

    Google Scholar 

  2. Medical Dictionary of Medical Terms. Available from: http://www.medicalglossary. org/patient.care.perinataLcare.definitions.html [31 October 2005].

    Google Scholar 

  3. Richardson DK, Gray JE, McCormick MC, Workmann K, Goldmann DA. Score for neonatal acute physiology: a physiologic severity index for neonatal intensive care. Pediatrics 1993:91:617–623.

    CAS  PubMed  Google Scholar 

  4. Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE—acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 1981;9:591–597.

    CAS  PubMed  Google Scholar 

  5. Richardson DK, Corcoran JD, Escobar GJ, Lee SK, Canadian NICU Network. Kaiser Permanente neonatal minimum data set area network, et al. SNAP-II and SNAPPE-II: simplified newborn illness severity and mortality risk scores. J Pediatr 2001:138:92–100.

    Article  CAS  PubMed  Google Scholar 

  6. Lee SK, McMillan DD, Ohlsson A, Pendray M, Synnes A, Whyte R, et al. Variations in practice and outcomes in the Canadian NICU network: 1996–1997. Pediatrics 2000;106:1070–1079.

    Article  CAS  PubMed  Google Scholar 

  7. Meadow W, Lantos J. Ethics at the limit of viability: a premie’s progress. NeoReviews 2003;4(6):e157–e162 [serial online].

    Article  Google Scholar 

  8. Richardson DK, Tarnow-Mordi WO. Measuring illness severity in newborn intensive care. J Intensive Care Med 1994;9:20–33.

    Google Scholar 

  9. Castella X, Artigas A, Bion J, Kari A. A comparison of severity of illness scoring systems for intensive care unit patients: results of a multicenter, multinational study. Crit Care Med 1995;23(8): 1327–1335.

    Article  CAS  PubMed  Google Scholar 

  10. Fery-Lemonnier E, Landais P, Loirat P, Kleinknecht D, Brivet F. Evaluation of severity scoring systems in ICUs—translation, conversion and definition ambiguities as a source of inter-observer variability in APACHE II, SAPS and OSE Int Care Med 1995:21:356–360.

    Article  Google Scholar 

  11. LeGall J, JR, Lemeshow S, Leleu G, Klar J, Huillard J, Rui M, et al. Customized probability models for early severe sepsis in adult intensive care patients. J Am Med Assoc 1995;273(8):644–650.

    Article  CAS  Google Scholar 

  12. Hyzg RC. ICU scoring and clinical decision making. [Edit.] Chest 1995; 107(2): 1482–1483.

    Google Scholar 

  13. Gardner RM, Shabot MM. Computerized ICU data management: pitfalls and promises. Int J. Clin Monitor Comput 1990:7:99–105.

    Article  CAS  Google Scholar 

  14. Dawood Y. The obstetric view of premature labor. In: Smith GF, Vidyasagar D, editors. Historical review and recent advances in neonatal and perinatal medicine. Mead Johnson; 1980. Available from: http://www.neonatology.org/classics/mjl980/chl0. html [31 October 2005].

    Google Scholar 

  15. Iams JD, Goldenberg RL, Merber BM, Moawad AH, Meis PJ, Das AF, et al. The preterm prediction study: can low-risk women destined for spontaneous preterm birth be identified? Gen Obstetr Gynecol 2001;184(4):652–655.

    Article  CAS  Google Scholar 

  16. Allan N, Aylward D, Berry E, Bowie J, Brooks F, Burgoyne W, et al. Preterm birth: making a difference. Toronto, Canada: Best Start Resource Centre; 2002.

    Google Scholar 

  17. Goldenberg RL, Iams JD, Mercer BM, Meis PJ, Moawad AH, Coper RL, et al. The preterm prediction study: the value of new vs. standard risk factors in predicting early and all spontaneous births. Am J Public Health 1998;88(2):233–238.

    Article  CAS  PubMed  Google Scholar 

  18. Catley C, Frize M, Petriu DC. Predicting preterm birth using artificial neural networks. In: Proceedings of IEEE Computer-Based Medical Systems, 22–24 June 2005, Dublin, Ireland, pp. 103–108.

    Google Scholar 

  19. Frize M, Ibrahim D, Seker H, Walker RC, Odetayo MO, Petrovic D, et al. Predicting clinical outcomes for newborns using two artificial intelligence approaches. In: Proceedings of IEEE Engineering in Medicine and Biology Society Conference, vol. 2, 1–5 September 2004, San Francisco, CA; pp. 3202–3205.

    Google Scholar 

  20. Alexian Brother’s Medical Center. Life with baby: pregnancy and beyond. Available from: http://www.alexian.org/progserv/babies/lhirdtri/apgarscore.html [31 October 2005].

    Google Scholar 

  21. Wyatt JS. Neonatal care: withholding or withdrawal of treatment in the newborn infant. Bailliére Clin Obstetr Gynaecol 1999; 13(4):503–501.

    CAS  Google Scholar 

  22. Carter BS. Ethical issues in neonatal care. E-Medicine [online journal] 2003. Available from: http://www.emedicine.com/ped/topic2767.htm [31 October 2005].

    Google Scholar 

  23. Tyson J. Evidence-based ethics and the care of premature infants. [Online] The future of children. The David and Lucile Packard Foundation; 2003. Available from: www.futureofchildren.org/information2826/information_show.htm?doc_id=79897 [31 October 2005].

    Google Scholar 

  24. Larcher V, Hird MF. Withholding and withdrawing neonatal intensive care. CurrPaediatr 2002;12:470–475.

    Google Scholar 

  25. Dwivedi AN, Bali RK, Naguib RNG. Organization current knowledge design (OCKD): a knowledge management framework for healthcare institutions. In: Proceedings of tlie 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 17–21 September 2003, Cancun, Mexico: pp. 1236–1239.

    Google Scholar 

  26. Health Canada. Perinatal health indicators for Canada: a resource manual. Minister of Public Works and Government Services Canada. 2000. Available from: http://www.phac-aspc.gc.ca/rhs-ssg/phic-ispc/ [October 31 2005].

    Google Scholar 

  27. Chien LY, Whyte R, Thiessen P, Walker R, Brabyn D, Lee SK, and the Canadian Neonatal Network. SNAP-II predicts severe intraventricular hemorrhage and chronic lung disease in the neonatal intensive care unit. J Perinatol 2002 Jan;22(1): 26–30.

    Article  PubMed  Google Scholar 

  28. Ambalavanan N, Carlo WA. Comparison of the prediction of extremely low birth weight neonatal mortality by regression analysis and by neural networks. Early Hum Dev 2001;65:123–137.

    Article  CAS  PubMed  Google Scholar 

  29. Walker RC, Frize M. Are artificial neural networks “ready to use” for decision-making in the NICU? J Paediatr Res 2004;56:6–8.

    Article  Google Scholar 

  30. Tong Y, Frize M, Walker R. Extending ventilation duration estimations approach from adult to neonatal intensive care patients using artificial neural networks. Trans Inf Technol Biomed 2002;6(2):188–191.

    Article  Google Scholar 

  31. Walker CR, Frize M. Clinical decision-making in the NICU: a computerized system to assist diagnosis and therapy. Paediatr Child Health 2000;5:29A.

    Google Scholar 

  32. Frize M, Ennett CM, Stevenson M, Trigg HCE. Clinical decision-support systems for intensive care units using artificial neural networks. Med Eng Phys 2001:23(3):217–225.

    Article  CAS  PubMed  Google Scholar 

  33. Ennett CM, Frize M. Selective sampling to overcome skewed a priori probabilities with neural networks. In: Proceedings of American Medical Informatics Association Annual Symposium, 4–8 November 2000. Los Angeles, CA; pp. 225–229.

    Google Scholar 

  34. Zernikow B, Holtmannspotter K, Michel E, Hornschuh F, Groote K, Hennecke KH. Predicting length-of-stay in preterm infants. Eur J Pediatr 1999;158:59–62.

    Article  CAS  PubMed  Google Scholar 

  35. Walker CR, Ennett CM, Frize M. Use of an artificial neural network to estimate probability of mortality and duration of ventilation in neonatal intensive care patients. In: Patel V, Rogers R, Haux R, editors, Medlnfo 01, 2–5 September. London. Amsterdam: IOS Press, 2001 (CD-Rom).

    Google Scholar 

  36. Sargent DJ. Comparison of artificial neural networks with other statistical approaches—results from medical data sets. Cancer 2001;91(8 Suppl S):1636–1642.

    Article  CAS  PubMed  Google Scholar 

  37. Livingstone DH, Manallack DT, Tetko IV. Data modelling with neural networks: advantages and limitations. J Comput-Aided Mol Des 1997; 11:135–142.

    Article  CAS  PubMed  Google Scholar 

  38. Lisboa PJG. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks 2002;15:11–39.

    Article  CAS  PubMed  Google Scholar 

  39. Blum A. Neural networks in C++. New York: John Wiley. 1992.

    Google Scholar 

  40. The Mathworks Inc. Mathworks (2004). Retrieved from: http://www.mathworks.com [5 May 2003].

    Google Scholar 

  41. Ennett CM, Frize M, Scales N. Logarithmic-sensitivity index as a stopping criterion for neural networks. In: Proceedings of 24th Annual Conference of the Engineering in Medicine and Biology and the Annual Fall Meeting of the Biomedical Engineering Society, 23–26 October 2002. Houston, TX; pp. 74–75.

    Google Scholar 

  42. Frize M, Wang L, Ennett CM, Nickerson BG, Solven FG, Stevenson M. New advances and validation of knowledge management tools for critical care using classifier techniques. In: Proceedings of American Medical Informatics Association Annual Symposium. 7–11 November 1998, Orlando, FL; pp. 553–558.

    Google Scholar 

  43. Frize M, Ennett CM, Charette E. Automated optimization of the performance of artificial neural networks to estimate medical outcomes. In: Proceedings of die 3rd ITAB Conference (Information Technology Applications in Biomedicine) and ITIS (International Telemedical Information Society), 9–10 November 2000, Arlington VA, pp. 168–173.

    Google Scholar 

  44. Ennett CM, Frize M, Charette E. Automated optimisation of neural networks performance. Med Eng Phys 2004;26:321–328.

    Article  PubMed  Google Scholar 

  45. Zemikow B, Holtmannspoetter K, Michel E, Pielemeier W, Hornschuh F, Westermann A, et al. Artificial neural network for risk assessment in preterm neonates. Arch Dis Child Fetal Neonatal 1998;79:F129–F134.

    Article  Google Scholar 

  46. Shi Y. Development of a model for prediction of repeat injuries in injured children using artificial neural networks. ISS Master’s thesis, Systems and Computer Engineering, Carleton University, Ottawa, Canada; 2004.

    Google Scholar 

  47. Frize M, Ennett CM, Hebert R Improving the efficiency and effectiveness of artificial neural networks as decision-support systems. In: Patel V, Rogers R, Haux R, editors. Medinfo, September, London. Amsterdam: IOS Press: 2001 (CD-Rom).

    Google Scholar 

  48. Garson GD. Interpreting neural-network connection weights. AI Expert 1991:6(4): 46–51.

    Google Scholar 

  49. Goh TC. Back-propagation neural networks for modeling complex systems. Artificial Intell Eng 1995;9(3): 143–151.

    Article  Google Scholar 

  50. Rybchynski D. Design of an artificial neural network framework to enhance the development of clinical prediction models. MScE thesis. School of Information Technology and Engineering, University of Ottawa, Canada; 2005.

    Google Scholar 

  51. Manickam S, Abidi SSR. Extracting clinical cases from XML-based electronic patient records for use in Web-based medical case-based reasoning systems. In: Patel V, Rogers R, Haux R. editors, Medinfo: September, London. Amsterdam: IOS Press; 2001 (CD-Rom). Available from: http://www.cs.dal.ca/~sraza/papers/MEDINFO01_CBR.pdf [31 October 2005].

    Google Scholar 

  52. Morris B. Case-based reasoning. West Virginia University. AI/ES Update 1995:5(1).

    Google Scholar 

  53. Craw S. Case-based reasoning for tablet formulation. Available from: http://www. comp.rgu.ac.uk/staff/smc/papers/bpc01.pdf [October 31 2005].

    Google Scholar 

  54. Frize M, Walker R. Clinical decision support systems for intensive care units using case-based reasoning. Med Eng Phys 2000;22:671–677.

    Article  CAS  PubMed  Google Scholar 

  55. Ennett CM. Imputation of missing values by integrating artificial neural networks and case-based reasoning. PhD thesis. Systems and Computer Engineering, Carleton University, Ottawa, Canada: 2003.

    Google Scholar 

  56. Meis PJ, Goldenberg RL, Mercer BM, lams JD, Moawad AH, Miodovnik M, et al. The preterm prediction study: Risk factors for indicated preterm births. American Journal of Obstetrics and Gynecology 1998;178(3):562–567.

    Article  CAS  PubMed  Google Scholar 

  57. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92(4):529–534.

    Article  CAS  PubMed  Google Scholar 

  58. Ewing G, Freer Y, Logic R, Hunter J, Mcintosh N, Rudkin S. et al. Role and experience determine decision support interface requirements in a neonatal intensive care environment. J Biomed Inform 2003;36(4–5):240–249.

    Article  PubMed  Google Scholar 

  59. Frize M, Yang L, Walker RC, O’Connor A. Conceptual framework of knowledge management for ethical decision-making support in neonatal intensive care. Trans Inf Technol Biomed 2005;9(2):205–215.

    Article  Google Scholar 

  60. Turner M, Zhu F, Kotsiopoulus I, Russell M, Bennett K, Brereton P. et al. Using Web service technologies to create an information broker: an experience report. In: Proceedings of the 26th International Conference on Software Engineering, 23–28 May 2004, Edinburgh, Scotland; pp. 552–561.

    Google Scholar 

  61. Hoffman D. Marketing + MIS = e-service. Commun ACM. 2003;46:29–34.

    Article  Google Scholar 

  62. Lea D, Vinoski S. Middleware for Web services. IEEE Internet Comput 2003:7:28–29.

    Article  Google Scholar 

  63. Berners-Lee T, Hendler J, Lasilla O. The semantic Web. Sci Am. 2001; 34–43. Available from: http://www.sciam.com/article.cfm?articleID=00048144-10D2-JC70-84A9809EC588EF21 [31 October 2005].

    Google Scholar 

  64. Lee Y, Patel C, Chun SA, Geller J. Compositional knowledge management for medical services on semantic Web. In: Proceedings of the 13th International World Wide Web Conference, May 2004, New York, NY; pp. 498–499.

    Google Scholar 

  65. Kwon OB. Meta Web service: building Web-based open decision support system based on Web services. Expert Syst Appl 2003:24:375–389.

    Article  Google Scholar 

  66. Catley C, Frize M, Petriu DC. (2005) Semantic Web services for healthcare. Handbook of Research on Informatics in Healthcare and Biomedicine. Idea Group Reference: Lazakidou A. In press (June 2005).

    Google Scholar 

  67. Turner M, Budgen D, Brereton P. Turning software into a service. IEEE Comput 2003:36:38–44.

    Article  Google Scholar 

  68. Catley C, Petriu DC, Frize M. A UML framework for Web services-based clinical decision support. In: Proceedings of the 14th International Conference on Intelligent and Adaptive Systems, 20–22 July 2005. Toronto, Canada, pp. 174–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frize, M., Walker, R.C., Catley, C. (2007). Healthcare Knowledge Management: Knowledge Management in the Perinatal Care Environment. In: Bali, R.K., Dwivedi, A.N. (eds) Healthcare Knowledge Management. Health Informatics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49009-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49009-0_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33540-7

  • Online ISBN: 978-0-387-49009-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics