Skip to main content

Microbial Pretreatment of Biomass

Potential for Reducing Severity of Thermochemical Biomass Pretreatment

  • Chapter
Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

Abstract

Typical pretreatment requires high-energy (steam and electricity) and corrosion-resistant, high-pressure reactors. A review of the literature suggests that fungal pretreatment could potentially lower the severity requirements of acid, temperature and time. These reductions in severity are also expected to result in less biomass degradation and consequently lower inhibitor concentrations compared to conventional thermochemical pretreatment. Furthermore, potential advantages of fungal pretreatment of agricultural residues, such as corn stover, are suggested by its effectiveness in improving the cellulose digestibility of many types of forage fiber and agricultural wastes. Our preliminary tests show a three- to five-fold improvement in enzymatic cellulose digestibility of corn stover after pretreatment with Cyathus stercoreus; and a ten- to 100-fold reduction in shear force needed to obtain the same shear rate of 3.2 to 7 rev/s, respectively, after pretreatment with Phanerochaete chrysosporium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hsu, T. A., (1996), in Handbook on Bioethanol—Production and Utilization, Wyman, C. E., ed., Taylor & Francis, Washington, DC, pp. 179–212.

    Google Scholar 

  2. Zerbe, J. I. and Baker, A. J. (1987), in Energy from Biomass and Waste X, Klass, D. L., ed., Elsevier, London, UK, pp. 927–947.

    Google Scholar 

  3. (2002), NREL Enzyme Sugar-Ethanol Platform Project, National Renewable Energy Laboratory, Golden, CO; (Website: http://www.ott.doe.gov/biofuels/esp_background.html.)

  4. Eriksson, K. E. and Vallander, L. (1982), Svensk Popperstidning 6, R33–R38.

    Google Scholar 

  5. Messner, K. and Srebotnik, E. (1994), FEMS Microbiol. Rev. 13, 351–364.

    Article  CAS  Google Scholar 

  6. Akhtar, M., Attridge, M. C., Blanchette, R. A., Meyers, G. C., Wall, M. B., Sykes, M. S., et al. (1992), Proceedings of the 5th International Conference on Biotechnology in the Pulp and Paper Industry, Kuwahara, M. and Shimada, M., eds., Uni Publishers, Tokyo, Japan, pp. 3–8.

    Google Scholar 

  7. Akhtar, M., Attridge, M. C., Meyers, G. C., Kirk, T. K., and Blanchette, R. A. (1992), TAPPI J. 75(2), 105–108.

    CAS  Google Scholar 

  8. Kashino, Y., Nishida, T., Yoshimasa, Y., Fujita, K., Kondo, R., and Sakai, K. (1993), TAPPI J. 76(12), 167–171.

    CAS  Google Scholar 

  9. Sawada, T., Nakamura, Y., Kobayashi, F., Kuwahara, M., and Watanabe, T. (1995), Biotechnol. Bioeng. 48(2), 719–724.

    Article  PubMed  CAS  Google Scholar 

  10. Sawada, T., Kuwahara, M., Nakamura, Y., and Suda, H. (1987), Int. Chem. Eng. 27, 686–693.

    Google Scholar 

  11. Sawada, T., Nakamura, Y., Kobayashi, F., Mohammed M., Watanabe, T., and Kuwahara, M. (1991), Proceedings of 6th International Symposium on Wood and Pulping Chemistry, Melbourne, Australia, pp. 463–469.

    Google Scholar 

  12. Karunanandaa, K., Fales, S. L., Varga, G. A., and Royse, D. J. (1992), J. Sci. Food Agric. 60, 105–112.

    Article  CAS  Google Scholar 

  13. Akin, D. E., Sethuraman, A., Morrison III, W. H., Martin, S. A., and Eriksson, K. E. (1993), Appl. Environ. Microbiol. 59(12), 4274–4282.

    PubMed  CAS  Google Scholar 

  14. Hadar, Y., Kerem, Z., and Gorodecki, B. (1993), J. Biotechnol. 30, 133–139.

    Article  CAS  Google Scholar 

  15. Demain, A. L. and Solomon, N. A., eds., (1986), Manual of Industrial Microbiology and Biotechnology, American Society for Microbiology, Washington, DC.

    Google Scholar 

  16. Warburg, O. and W. Christian (1942) Biochem. Z. 310:384–421.

    CAS  Google Scholar 

  17. Alexander, R. R. and Griffiths, J. M. (1993), Basic Biochemical Methods, 2nd ed., Wiley-Liss, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang A. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keller, F.A., Hamilton, J.E., Nguyen, Q.A. (2003). Microbial Pretreatment of Biomass. In: Davison, B.H., Lee, J.W., Finkelstein, M., McMillan, J.D. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0057-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0057-4_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6592-4

  • Online ISBN: 978-1-4612-0057-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics