Skip to main content

Synthesis and Properties of Biodegradable Polymers Used as Synthetic Matrices for Tissue Engineering

  • Chapter
Synthetic Biodegradable Polymer Scaffolds

Abstract

Organ or tissue failure remains a frequent, costly, and serious problem in health care despite advances in medical technology. The large number of patients suffering from tissue losses or organ failures is demonstrated by the approximately 8 million surgical procedures and 40 to 90 million hospital days required annually to treat these problems (Langer and Vacanti, 1993). Available treatments now include transplantation of organs from one individual to another, performing surgical reconstruction, use of mechanical devices (e.g., kidney dialyzer), and drug therapy. However, these treatments are not perfect solutions. Transplantation of organs is limited by the lack of organ donors, possible rejection, and other complications. For example, there are only 3000 donors available in contrast to 30,000 patients who die from liver failure each year (American Liver Foundation, 1988). Mechanical devices cannot perform all functions of an organ, e.g., kidney dialysis can only help remove some metabolic wastes from the body. Likewise, drugs can only replace limited biochemical functions of an organ or tissue, and physiologic control of drug levels comparable to the control systems of the body is difficult to achieve. For example, although diabetes can be partially treated by administration of insulin, it is still the leading cause of chronic renal failure and blindness (Chukwuma, 1995; Hoelscher et al, 1995; Sander and Wilson, 1993). This is partly due to difficulties in controlling the drug level in vivo (Levesque et al, 1992). Financially, the cost of surgical procedures is very high ($150,000 for a liver transplant). It is estimated that almost half of the United States $800 billion in annual health care costs are due to loss or malfunction of tissue or organs (Langer and Vacanti, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983): Molecular Biology of The Cell. New York: Garland Publishing

    Google Scholar 

  • Allcock HR (1989): Phosphazene high polymers. In: Comprehensive Polymer Science Vol. 4, Allen G, ed. New York: Pergamon Press

    Google Scholar 

  • Allcock HR, Gebura M, Kwon S, Neenan TX (1988a): Amphiphilic polyphosphazenes as membrane materials: Influence of side group on radiation cross-linking. Biomaterials 9:500–508

    PubMed  CAS  Google Scholar 

  • Allcock HR, Kwon S, Riding GH, Fizzpatrick RJ, Bennett JL (1988b): Hydrophilic polyphosphazenes as hydrogels: radiation cross-linking and hydrogel characteristics of poly[bis(methyethoxythoxy)-phosphazene. Biomaterials 9:509–513

    PubMed  CAS  Google Scholar 

  • American Liver Foundation (1988): Vital statistics of the United States, vol. 2, part A. New Jersey: ALF

    Google Scholar 

  • Amiji M, Park K (1993): Surface modification of polymeric biomaterials with poly (ethylene oxide), albumin, and heparin for reduced thrombogenicity.J Biomater Sci Polym Ed 4:217–234

    PubMed  CAS  Google Scholar 

  • Atala A, Cima LG, Kim W, Paige KT, Vacanti JP, Retik AB, Vacanti CA (1993): Injectable alginate seeded with chrondrocytes as a potential treatment for vesicoureteral reflux. J Urology 150:745–747

    CAS  Google Scholar 

  • Atala A, Kim W, Paige KT, Vacanti CA, Retik AB (1994): Endosopic Treatment of vescoureteral reflux with a chrondrocyte-alginate suspension. J Urology 152:641–643

    CAS  Google Scholar 

  • Barakat I, Dubois P, Grandfils C, Jerome R (1996): Macromolecular engineering of polylactone and polylactide. XXI. Controlled synthesis of low molecular weight polylactide macromonomers. J Polym Sci Polym Chem 34:497–502

    CAS  Google Scholar 

  • Barrera DA, Zylstra E, Lansbury PT, Langer R (1993): Synthesis and RGD peptide modification of a new biodegradable copolymers: Poly(lactic acid-co-lysine). J Am Chem Soc 115:11010–11011

    CAS  Google Scholar 

  • Belcheva N, Stamenova R, Tsvetanov C (1996): Crosslinking poly(ethylene oxide) for drug release systems. Macromol Symp 103:193–211

    CAS  Google Scholar 

  • Blair SD, Jarvis P, Salmon M, McCollum C (1990): Clinical trial of calcium alginate haemestatic swabs. Br J Surg 77:568–570

    PubMed  CAS  Google Scholar 

  • Boileau S (1989): Anionic ring-opening polymerization: Epoxides and episulfides. In: Comprehensive Polymer Science, Vol. 3, Allen G, ed. New York: Pergamon Press

    Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994): Treatment of deep cartilage defects in the knee with autologous chrondrocyte transplantation. NEJM 331:889–895

    PubMed  CAS  Google Scholar 

  • Camerson JM, Lawson DD (1960): The failure of polyvinyl sponge as a bone substitute. Res Vet Sci 1:230–231

    Google Scholar 

  • Cappello J, Crissman J, Dorman M, Mikolajckak M, Textor G, Marquet M, Ferrari F (1990): Genetic engineering of structural protein polymers.Biotechnol Prog 6:198–202

    PubMed  CAS  Google Scholar 

  • Chujo K, Kobayashi H, Suzuki J, Tokuhara S (1967): Physical and chemical characteristics of polyglycolide. Makromol Chem 100:267–270

    CAS  Google Scholar 

  • Chukwuma C Sr (1995): Type II diabetic nephropathy in perspective. J Diabetes Complications 9:55–67

    PubMed  Google Scholar 

  • Cima LG, Lopina ST, Merrill EW (1995): Hepatocyte response to PEO-tethered carbohydrates depend on tether conformation. Transactions of the 21st Annual meeting of the Society for Biomaterials 18:147

    Google Scholar 

  • Clarkson P (1960): Sponge implants for flat breasts. Proc R Soc of Med 53:880–881

    CAS  Google Scholar 

  • Cooper ML, Hansbrough JF, Speilvogel RL, Cohen R, Bartel RL, Naughton G (1991): In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 12:243–248

    PubMed  CAS  Google Scholar 

  • Doner LW, Douds DD (1995): Purification of commercial gellan to monovalent cation salts results in acute modification of solution and gel-forming properties. Carbohydr Res 273:225–233

    PubMed  CAS  Google Scholar 

  • Embleton JK, Tighe BJ (1993): Polymers for biodegradable medical devices. X. Microencapsulation studies: Control of poly-hydroxybutyrate-hydrovalerate microcapsules porosity via polycaprolactone blending. J Microencapsul 10:341–352

    PubMed  CAS  Google Scholar 

  • Engelberg I, Kohn J (1991): Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 12:292–304

    PubMed  CAS  Google Scholar 

  • Ficek BJ, Peppas NA (1993): Novel preparation of poly (vinyl alcohol) microparticles without crosslinking agent for controlled drug delivery of proteins.J Controlled Release 27:259–264

    CAS  Google Scholar 

  • Finch CA (1973): Polyvinyl Alcohol: Properties and Applications. London: Wiley

    Google Scholar 

  • Frazza EJ, Schmitt EE (1971): A new absorbable suture. J Biomed Mater Res Symp 1:43–58

    Google Scholar 

  • Freed LE, Vunjak-Novakovic G (1995): Tissue engineering of cartilage. In: The Biomedical Engineering Handbook, Bronzino JD, ed. Boca Raton: CRC Press

    Google Scholar 

  • Gilding DK, Reed AM (1979): Biodegradable polymers for use in surgery-polyglycolic/poly(lactic acid) homo-and copolymers: 1. Polymer 20:1459–1464

    CAS  Google Scholar 

  • Giunchedi P, Conti B, Maggi L, Conte U (1994): Cellulose acetate butyrate and polycaprolactone for ketoprofen spray-dried microsphere preparation. J Microencapsul 11:381–393

    PubMed  CAS  Google Scholar 

  • Giusti P, Soldani G, Palla M, Paci M, Levita G (1985): New biolized polymers for cardiovascular applications. Life Support Syst 3(Suppl l):476–480

    PubMed  Google Scholar 

  • Giusti P, Lazzeri L, Lelli L (1993): Bioartificial polymeric materials: A new method to design biomaterials by using both biological and synthetic polymers. Tr Polym Sei 9:261–266

    Google Scholar 

  • Goldberg I, Salerno AJ, Patterson T, Williams JI (1989): Cloning and expression of a collagen-analog-encoding synthetic gene in Escherichia coli. Gene 80:305–314

    CAS  Google Scholar 

  • Gombotz WR, Pettit DK (1995): Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem 6:332–351

    CAS  Google Scholar 

  • Gross RA (1994): Bacterials polyesters: Structural variability in a microbial synthesis. In: Biomedical Polymers: Designed-to-Degrade Systems, Shalaby SW, ed. Munich: Carl Hanser Verlag

    Google Scholar 

  • Gupta MC, Desmuth VG (1983): Radiation effect on poly (lactic acid). Polymer 24:827–830

    CAS  Google Scholar 

  • Hansbrough JF, Cooper ML, Cohen R, Spielvogel R, Greenleaf G, Nartel RL, Naughton G (1992): Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin graft on athymic mice. Surgery 111:438–446

    PubMed  CAS  Google Scholar 

  • Haupt GJ, Myers RD (1960): Polyvinyl formalinized (Ivalon) sponge in the repair of diaphragmatic defects. A M A Arch Surg 80:613–615

    Google Scholar 

  • Hay DL, von Fraunhofe JA, Chegini N, Masterson BJ (1988): Locking mechanism strength of absorbable ligating devices. J Biomed Mater Res 22:179–190

    PubMed  CAS  Google Scholar 

  • Heller J (1985): Controlled drug release from poly(orthoester)-a surface eroding polymer. J Controlled Release 2:167–177

    CAS  Google Scholar 

  • Heller J, Daniels AU (1994): Poly(ortho esters). In: Biomedical Polymers: Designed-to-Degrade Systems, Shalaby SW, ed. Munich: Carl Hanser Verlag

    Google Scholar 

  • Hill-West JL, Chowdhury SM, Slepian MJ, Hubbell JA (1994): Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barrier. Proc Natl Acad Sei USA 91:5967–5971

    CAS  Google Scholar 

  • Hoelscher DD, Weir MR, Bakris GL (1995): Hypertension in diabetic patients: An update of interventional studies to preserve renal function. J Clin Pharmacol 35:73–80

    PubMed  CAS  Google Scholar 

  • Holmes PA (1988): Biologically produced (R)-3-hydroxyalkane polymers and co-polymers. In: Developments in Crystalline Polymers, Bassett DC, ed. New York: Elsevier

    Google Scholar 

  • Huang SJ (1989): Biodegradable Polymers. In: Polymers—Biomaterials and Medical Applications, Kroschwitz JI, ed. New York: Wiley & Sons

    Google Scholar 

  • Hubbell JA (1995): Biomaterials in tissue engineering. Bio/Technology 13:565–576

    PubMed  CAS  Google Scholar 

  • Jerome R, Teyssie P (1989): Anionic ring-opening polymerization. In: Comp Polym Sci, Vol. 3. New York: Pergamon Press

    Google Scholar 

  • Johnson LB, Aiken J, Mooney D, Schloo BL, Griffith-Cima L, Langer R, Vacanti JP (1994): The mesentery as a laminated vascular bed for hepatocyte transplantation. Cell Transplantation 3:273–281

    PubMed  Google Scholar 

  • Jushasz J, Lenaerts V, Raymond P, Ong H (1989): Diffusion of rat atrial natriuretic factor in thermoreversible poluoxamer gels. Biomaterials 10:265–268

    Google Scholar 

  • Kallen B, Nilsson O, Thelin C (1977): Effect of encephalitogenic protein on migration in agarose of leukocytes from patients with multiple sclerosis. Variable effect of the antigen in a large dose range, with a literature review. Acta Neurol Scand 55:33–46

    Google Scholar 

  • Kaplan DL, Wiley BJ, Mayer JM, Arcidiacono S, Keith J, Lombardi SJ, Ball D, Allen AL (1994): Biosynthetic polysaccharides. In: Biomedical Polymers: Designed-to-Degrade Systems. Munich: Carl Hanser Verlag

    Google Scholar 

  • Kasperczky J (1996): Microstructural analysis of poly[(L,L-lactide)-co-(glycolide)] by 1H and 13C n.m.r. spectroscopy. Polymer 37:201–203

    Google Scholar 

  • Katz AR, Turner R (1970): Evaluation of tensile and absorption properties of poly-glycolic acid sutures. Surg Gynecol Obstet 131:701–716

    PubMed  CAS  Google Scholar 

  • Kim TH, Vacanti JP (1995): Tissue engineering of the liver. In: The Biomedical Engineering Handbook. Boca Raton: CRC Press

    Google Scholar 

  • Kricheldorf HR, Kreiser-Saunders I (1996): Polylactides—synthesis, characterization and medical applications. Macromol Symp 103:85–102

    CAS  Google Scholar 

  • Kricheldorf HR, Lee SR (1995): Polylactones. 35. Macrocyclic and stereoselective polymerization of Ăź-DL-butyrolactone with cyclic dibutyltin initiators.Macromol 28:6718–6725

    CAS  Google Scholar 

  • Kung IM, Wang FF, Chang YC, Wang YJ (1995): Surface modifications of alginate/poly(L-lysine) microcapsular membrane with poly(ethylene glycol) and poly(vinyl alcohol) Biomaterials 16:649–655

    PubMed  CAS  Google Scholar 

  • Langer R, Vacanti JP (1993): Tissue engineering. Science 260:920–926

    PubMed  CAS  Google Scholar 

  • Laurencin CT, Norman ME, Elgendy HM, el-Almin SF, Allcock HR, Pucher SR, Ambrosio AA (1993): Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res 27:963–973

    PubMed  CAS  Google Scholar 

  • Leenslag JW, Pennings A J, Bos RRM, Rozema FR, Boering G (1987): Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation. Biomaterials 8:311–314

    Google Scholar 

  • Lentz BR (1994): Polymer-induced membrane fusion: Potential mechanism and relation to cell fusion events. Chem Phys Lipids 73:91–106

    PubMed  CAS  Google Scholar 

  • Levesque L, Brubaker PL, Sun AM (1992): Maintenance of long-term secretary function by microencapsulated islets of Langerhans. Endrocrinology 130:644–650

    CAS  Google Scholar 

  • Lora S, Carenza M, Palma G, Caliceti P, Battaglia P, Lora A (1991): Biocompatible polyphosphazene by radiation-induced graft copolymerization and heparinization.Biomaterials 12:275–280

    PubMed  CAS  Google Scholar 

  • Ma PX, Schloo B, Mooney D, Langer R (1995): Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J Biomed Mater Res 29:1587–1595

    PubMed  CAS  Google Scholar 

  • Massia SP, Hubbell JA (1991): An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 114:1089–1100.

    PubMed  CAS  Google Scholar 

  • Matas AJ, Sutherland DE, Steffes MW, Mauer SM, Sowe A, Simmons RL, Najarian JS (1976): Hepatocellular transplantation for metabolic deficiencies: Decrease of plasma bilirubin in Gunn rats. Science 192:892–4

    PubMed  CAS  Google Scholar 

  • McGrath KP, Fournier MJ, Mason TL, Tirrell DA (1992): Genetically directed synthesis of new polymeric materials. Expression of artificial genes encoding proteins with repeating -(AlaGly)3ProGluGly-elements. J Am Chem Soc 114:727–733

    CAS  Google Scholar 

  • Merrell JC, Russell RC, Zook EG (1986): Polyglycolic acid tubing as a conduit for nerve regeneration. Ann Plast Surg 17:49–58

    PubMed  CAS  Google Scholar 

  • Merrill EW (1993): Polyethylene oxide) star molecules: Synthesis, characterization, and applications in medicine and biology. J Biomater Sei, Polym Ed 5:1–11

    CAS  Google Scholar 

  • Mooney DJ, Langer RS (1995): Engineering biomaterials for tissue engineering. The 10–100 micron size scale. In: The Biomedical Engineering Handbook, Bronzino JD, ed. Boca Raton: CRC Press

    Google Scholar 

  • Mooney DJ, Breuer MD, McNamara K, Vacanti JP, Langer R (1995a): Fabricating tubular devices from polymers of lactic ad glycolic acid for tissue engineering. Tissue Eng 1:107–118

    PubMed  CAS  Google Scholar 

  • Mooney DJ, Park S, Kaufmann PM, Sano K, McNamara K, Vacanti JP, Langer R (1995b): Biodegradable sponges for hepatocyte transplantation. J Biomed Mater Res 29:959–965

    PubMed  CAS  Google Scholar 

  • Mooney DJ, Kaufmann PM, Sano K, Schwendeman SP, Majahod K, Schloo B, Vacanti JP, Langer R (1996): Localized delievery of epidermal growth factor improve the survival of transplanted hepatocytes. Biotech Bioeng 49:1–8

    Google Scholar 

  • Morikawa K, Okada O, Hosokawa M, Kobayashi H (1987): Enhancement of therapeutic effects of recombinant interleukin-2 on a transplantable rat fibrosarcoma by the use of a sustained release vehicle, pluronic gel. Cancer 47:37–41

    CAS  Google Scholar 

  • Nakamura T, Hitomi S, Watanabe S, Shimizu Y, Jamshidi K, Hyon SH, Ikada Y (1989): Bioabsorption of polylactides with different molecular properties. J Biomed Mater Res 23:1115–1130

    PubMed  CAS  Google Scholar 

  • Nakamura T, Shimizu Y, Watanabe S, Hitomi S, Kitano M, Tamada J, Matsunobe S (1990): New bioabsorbable plegets and non-woven fabrics made from polyglycolide (PGA) for pulmonary surgery: Clinical experience.Thorac Cardiovas Surg 38:81–85

    CAS  Google Scholar 

  • Nathan A, Kohn J (1994): Amino acid derived polymers. In: Biomedical Polymers: Designed-to-Degrade Systems, Shalaby SW, ed. Munich: Carl Hanser Verlag

    Google Scholar 

  • Nerem RM, Sambanis A (1995): Tissue engineering: From biology to biological substitutes. Tissue Eng 1:3–13

    PubMed  CAS  Google Scholar 

  • O’Brien JP (1993): New structural polymers from Nature. Tr Polym Sei 8:228–232

    Google Scholar 

  • Ott CM, Day DF (1995): Bacterials alginates: An alternative industrial polymer. Tr Polym Sei 3:402–406

    CAS  Google Scholar 

  • Pautian PW, McPherson JC, Haase RR, Runner RR, Plowman KM, Ward DF, Nuyen TH, McPherson JC (1993): Intravenous Pluronic F-127 in early burn wound treatment in rats. Burns 19:187–191

    Google Scholar 

  • Penczek S, Kubisa P (1989): Cationic ring-opening polymerization: Ethers. In: Comprehensive Polymer Science, Vol. 3, Allen G, ed. New York: Pergamon Press

    Google Scholar 

  • Penczek S, Slomkowski S (1989): Cationic ring-opening polymerization: Cyclic ester. In: Comprehensive Polymer Science, Vol. 3, Allen G, ed. New York: Pergamon Press

    Google Scholar 

  • Peppas NA, Scott JE (1992): Controlled release from polyvinyl alcohol) gels prepared by freezing-thrawing processes. J Controlled Release 18:95–100

    CAS  Google Scholar 

  • Peters WJ, Smith DC (1981): Ivalon breast prostheses: Evaluation 19 years after implantation. Plast Rescontr Surg 67:514–518

    CAS  Google Scholar 

  • Pham HN, Padilla JA, Nguyen KD, Rosen JM (1991): Comparison of nerve repair techniques: Suture vs. avitene-polyglycolic acid tube.J Reconstr Microsurg 1:31–36

    Google Scholar 

  • Polk A, Amsden B, De Yao K, Peng T, Goosen MF (1994): Controlled release of albumin from chitosan-alginate microcapsules.J Pharm Sei 83:178–185

    CAS  Google Scholar 

  • Ponder KP, Gupta S, Leland F, Darlington G, Finegold M, DeMayo J, Ledley FD, Chowdhury JR, Woo SL (1991): Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sei USA 88:1217–1221

    CAS  Google Scholar 

  • Prasad KU, Iqbal MA, Urry DW (1985): Utilization of 1-hydroxybenzotriazole in mixed anhydride coupling reactions. Int J Pept Protein Res 25:408–13

    PubMed  CAS  Google Scholar 

  • Puelacher WC, Mooney D, Langer R, Upton J, Vacanti JP, Vacanti CA (1994): Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chrondrocytes. Biomaterials 15:774–778

    PubMed  CAS  Google Scholar 

  • Ratner BD (1992): New ideas in biomaterials science—a path to engineered bioma-terials. J Biomed Mater Res 27:837–850

    Google Scholar 

  • Razavi R, Khan Z, Haenerle CB, Beam D (1993): Clinical applications of a polyphos-phazene-based resilent denture liner. J Prosthodontics 2:224–227

    CAS  Google Scholar 

  • Reed AM, Gilding DK (1981): Biodegradable polymers for use in surgery— poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22:494–498

    Google Scholar 

  • Sanders RJ, Wilson MR (1993): Diabetes-related eye disorders. J Natl Med Assoc 85:104–8

    PubMed  CAS  Google Scholar 

  • Sawhney AS, Pathak CP, Hubbell JA (1993): Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(a-hydroxy acid) diacrylate macromonomers. Macromol 26:581–587

    CAS  Google Scholar 

  • Sawhney AS, Pathak CP, van Rensburg JJ, Dunn RC, Hubbell JA (1994): Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed Mater Res 28:831–838

    PubMed  CAS  Google Scholar 

  • Schmolka IR (1972): Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatments of burns. J Biomed Mater Res 6:571–582

    PubMed  CAS  Google Scholar 

  • Schwartz AW, Erich JB (1960): Experimental study of poly vinyl-alcohol-formal (Ivalon) sponge as a substitute for tissue. Plast Rescontr Surg 25:1

    CAS  Google Scholar 

  • Scopelianos AG (1994): Polyphophazenes as new biomaterials. In: Biomedical Polymers: Designed-to-Degrade Systems, Shalaby SW, ed. New York: Carl Hanser Verlag

    Google Scholar 

  • Scouten WH (1995): Matrices and immobilization methods for cell adhesion/immobilization studies. Bioprocess Technol 20:233–265

    PubMed  CAS  Google Scholar 

  • Serwer P (1987): Agarose gel electrophoresis of bacteriophages and related particles. J Chromatogr 418:345–357

    PubMed  CAS  Google Scholar 

  • Shalaby SW, Johnson RA (1994): Synthetic absorbable polyesters. In: Biomedical Polymers, Shalaby SW, ed. Munich: Carl Hanser Verlag

    Google Scholar 

  • Skjak-Braek G, Smidsrod O, Larsen B (1986): Tailoring of alginates by enzymatic modification in vitro. Int J Biol Macromol 8:330–336

    Google Scholar 

  • Smidsrod O, Skjak-Braek G (1990): Alginate as immobilization matrix for cells. Tr Biotech 8:71–78

    CAS  Google Scholar 

  • Sogah DY, Perl-Treves D, Wong WH, Zheng QY (1994): De Novo design and synthesis of protein-based hybrid polymers. Macromol Reports A31:1003–1008

    CAS  Google Scholar 

  • Soldani G, Panol G, Sasken HF, Goddard MB, Galletti PM (1992): Small diameter polyurethane-polydimethylsiloxane vascular prostheses made by a spraying, phase-inversion process. J Mater Sci Mater Med 3:106–113

    CAS  Google Scholar 

  • Sun AM, O’Shea GM, Goosen MF (1984): Injectable microencapsulated islet cells as a bioartificial pancreas. Appl Biochem Biotech 10:87–99

    CAS  Google Scholar 

  • Sutherland IW (1991): Alginates. In: Biomaterials: Novel Materials From Biological Sources, Byrom D, ed. New York: Stockton Press

    Google Scholar 

  • Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1995): Fabrication of biodĂ©gradation polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Edn 7:23–38

    CAS  Google Scholar 

  • Timmins MR, Lenz RW (1994): Enzymatic biodĂ©gradation of polymers: The polymer chemist’s perspective. Tr Polymer Sci 2:15–19

    CAS  Google Scholar 

  • Tirrell JG, Fournier MJ, Mason TL, Tirrell DA (1994): Biomolecular Materials. In: C&EN (December 19), Jacobs M, ed. Washington, DC: American Chemical Society

    Google Scholar 

  • Urry DW (1988a): Entropie elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics.J Protein Chem 7:1–34

    PubMed  CAS  Google Scholar 

  • Urry DW (1988b): Entropie elastic processes in protein mechanisms. II. Simple (passive) and coupled (active) development of elastic forces. J Protein Chem 7:81–114

    PubMed  CAS  Google Scholar 

  • Urry DW (1993): Molecular machines: How motion and other function of living organisms can result from reversible chemical changes. Angew Chem Int Ed Engl 32:819–841

    Google Scholar 

  • Urry DW, Parker TM, Minehan DS, Nicol A, Pattanaik A, Peng SQ, McPherson DT, Gowda DC (1995): The capacity to vary the bioactive elastic protein-based polymers. PMSE Prepr, August 1995 399–402.

    Google Scholar 

  • Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R (1988): Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Ped Surg 23:3–9

    CAS  Google Scholar 

  • Vainionpaa S, Kilpikari J, Laiho J, Helevirta P, Rokkanen P, Tormala P (1987): Strength and strength retention in vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation. Biomaterials 8:46–48

    PubMed  CAS  Google Scholar 

  • Vert M, Guerin P (1991): Biodegradable aliphatic polyesters of the poly(hydroxy acid)-type for temporary therapeutic applications. In: Biomaterials Degradation, Barbosa MA, ed. New York: Elsvier

    Google Scholar 

  • Vert M, Christel P, Chalot F, Leray J (1984): Bioresorbable plastic materials for bone surgery. In:Macromolecular Biomaterials, Hastings GW, Ducheyne P, eds. Boca Raton: CRC Press

    Google Scholar 

  • Wang PY (1989): Compressed polyvinyl alcohol)-polycaprolactone admixture as a model to evaluate erodible implants for sustained drug delivery.J Biomed Mater Res 23:91–104

    PubMed  CAS  Google Scholar 

  • Wong WH (1996): Design, Synthesis and Properties of Protein Based Hybrid Polymers. PhD Thesis. Ithaca, NY: Cornell University.

    Google Scholar 

  • Wight TN, Heinegrad DK, Hascall VC (1991): Proteoglycans: Structure and Function. In: Cell Biology of Extracellular Matrix, Hay ED, ed. New York: Plenum Press

    Google Scholar 

  • Yalpani M (1988): Polysaccharides: Syntheses, Modifications and Structure/Properties Relations. Amsterdam: Elsevier

    Google Scholar 

  • Yasin M, Tighe BJ (1992): Polymers for biodegradable medical devices. VIII. Hydroxybutyrate-hydroxyvalerate copolymers: Physical and degradative properties of blends with polycaprolactone. Biomaterials 13:9–16

    PubMed  CAS  Google Scholar 

  • Yerdel MA, Koksoy C, Karayalcin K, Kuzu A, Aoyama M, Anadol E (1993): Use of polyglycolic acid mesh with a new double pursestring technique in renal trauma: An experimental study. Injury 24:158–160

    PubMed  CAS  Google Scholar 

  • Zalipsky S (1995): Functionalized poly (ethylene glycol) for preparation of biologically relevant conjugates. Bioconjugate Chem 6:150–165

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Wong, W.H., Mooney, D.J. (1997). Synthesis and Properties of Biodegradable Polymers Used as Synthetic Matrices for Tissue Engineering. In: Atala, A., Mooney, D.J. (eds) Synthetic Biodegradable Polymer Scaffolds. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4154-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4154-6_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8677-6

  • Online ISBN: 978-1-4612-4154-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics