Skip to main content

Interpretations of Data and Mechanisms for Hippocampal Pyramidal Cell Models

  • Chapter
Models of Cortical Circuits

Part of the book series: Cerebral Cortex ((CECO,volume 13))

Abstract

A neuron model organizes, collates, and directs our expanding electrophysiological and biophysical knowledge. This chapter reviews single-neuron models, with hippocampal pyramidal cells (HPCs) as the reference, emphasizing the integration of electrophysiological data and biophysical theory into a cohesive hypothesis. We discuss the process of translating data into specific mechanistic hypotheses. We critically review the parameters and mechanisms that have been used in several published models, comparing their predictions with the data and against each other. A final goal is the description of an updated HPC model that may be a reference for future refinement and elaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. R., and Galvan, M., 1986, Voltage-dependent currents of vertebrate neurons and their role in mmembrane excitability, in: Advances in Neurology, Vol. 4, Basic Mechanisms of the Epilepsies (A. De-lgado-Escueta, A. A. Ward, D. M. Woodbury, and R. Porter, eds.), Raven Press, New York, pp. 137–170.

    Google Scholar 

  • Agmon-Snir, H., 1995, A novel theoretical approach to the analysis of dendritic transients, Biophys. J. 69:1633–1656.

    PubMed  CAS  Google Scholar 

  • Agmon-Snir, H., and Segev, I., 1993, Signal delay and input synchronization in passive dendritic structures, J. Neurophsyiol. 70:2066–2085.

    CAS  Google Scholar 

  • Alger, B. E., 1984, Hippocampus: Electrophysiological studies of epileptiform activity in vitro, in: Brain Slices (R. Dingledine, ed.), Plenum Press, New York, pp. 157–199.

    Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1980, Epileptiform burst afterhyperpolarization: Calcium-dependent potassium potential in hippocampal CA1 pyramidal cells, Science 210:1122–1124.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Williamson, A., 1988, A transient calcium-dependent potassium component of the epileptiform burst after-hyperpolarization in rat hippocampus, J. Physiol. 399:191–205.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., Dhanjal, S. S., Dingledine, R., Garthwaite, J., Henderson, G., King, G. L., Lipton, P., North, A., Schwartzkroin, P. A., Sears, T. A., Segal, M., Whittingham, T. S., and Williams, J., 1984, Brain slice methods, in: Brain Slices (R. Dingledine, ed.), Plenum Press, New York, pp. 381–437.

    Google Scholar 

  • Alzheimer, C, Schwindt, P. C., and Crill, W. E., 1993, Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex, J. Neurosci. 13(2):660–673.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Storm, J., and Wheal, H. V., 1986, Thresholds of action potentials evoked by synapses on the dendrites of pyramidal cells in the rat hippocampus in vitro, J. Physiol. 383:509–526.

    Google Scholar 

  • Anderson, W. R., Franck, J. E., Stahl, W. L., and Maki, A. A., 1994, Na, K-ATPase is decreased in hippocampus of kainate-lesioned rats, Epilepsy Res. 17(3):221–231.

    PubMed  CAS  Google Scholar 

  • Andrade, R., and Nicoll, R. A., 1987, Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro, J. Physiol. 394:99–124.

    PubMed  CAS  Google Scholar 

  • Andreasen, M., and Lambert,J. D. C., 1995, Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus, J. Physiol. 483:421–441.

    PubMed  CAS  Google Scholar 

  • Andreasen, M., and Lambert, J. D. C., 1998, Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones, J. Physiol. 507:441–462.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1981, Sodium channels and gating currents, Physiol. Rev. 61:644–683.

    PubMed  CAS  Google Scholar 

  • Avery, R. B., and Johnston, D., 1996, Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons, J. Neurosci. 16(18):5567–5582.

    PubMed  CAS  Google Scholar 

  • Azouz, R., Jensen, M. S., and Yaari, Y., 1996, Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells, J. Physiol. 492:211–223.

    PubMed  CAS  Google Scholar 

  • Barnes, S., and Hille, B., 1989, Ionic channels of the inner segment of tiger salamander cone photo-receptors, J. Gen. Physiol. 94:719–743.

    PubMed  CAS  Google Scholar 

  • Barrett, J. N., Magleby, K. L., and Pallotta, B. S., 1982, Properties of single calcium-activated potassium channels in cultured rat muscle, J. Physiol. 331:211–230.

    PubMed  CAS  Google Scholar 

  • Benardo, L., Masukawa, L., and Prince, D., 1982, Electrophysiology of isolated hippocampal pyramidal dendrites, J. Neurosci. 2(11):1614–1622.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982a, Cholinergic excitation of mammalian hippocampal pyramidal cells, Brain Res. 249:315–331.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982b, Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells, Brain Res. 249:333–344.

    PubMed  CAS  Google Scholar 

  • Bernander, O., Douglas, R. J., Martin, K. A. C., and Koch, C., 1991, Synaptic background activity influences spatiotemporal integration in single pyramidal cells, Proc. Natl. Acad. Sci. USA 88:11569–11573.

    PubMed  CAS  Google Scholar 

  • Bhalla, U. S., and Bower, J. M., 1993, Exploring parameter space in detailed single neuron models: Simulations of the mitral and granule cells of the olfactory bulb, J. Neurophysiol. 69(6):1948–1968.

    PubMed  CAS  Google Scholar 

  • Bhalla, U. S., Bilitch, D. H., and Bower, J. M., 1992, Rallpacks: A set of benchmarks for neuronal simulators, Trends Neurosci. 15(11) 453–458 [Available from http://www.genesis.bbb.caltech.edu/pub/genesis].

    PubMed  CAS  Google Scholar 

  • Bilkey, D. K., and Schwartzkroin, P. A., 1940, Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells, Brain Res. 514:77–83.

    Google Scholar 

  • Blatz, A. L., and Magleby, K. L., 1987, Calcium-activated potassium channels, Trends Neurosd. 463–467.

    Google Scholar 

  • Borg-Graham, L., 1987a, Modelling the electrical behavior of cortical neurons—Simulations of hippocampal pyramidal cells, in: Computer Simulation in Brain Sdence (R. M. J. Cotterill, ed.), Cambridge University Press, Cambridge, pp. 384–404.

    Google Scholar 

  • Borg-Graham, L., 1987b, Modelling the somatic electrical behavior of hippocampal pyramidal neurons, Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA [Available as MIT AI Laboratory Technical Report 1161 (1989)].

    Google Scholar 

  • Borg-Graham, L., 1987c, Simulations suggest information processing roles for the diverse currents in hippocampal neurons, in: Neural Information Processing Systems (D. Z. Anderson, ed.), American Institute of Physics, New York, pp. 82–94.

    Google Scholar 

  • Borg-Graham, L., 1991, Modelling the non-linear conductances of excitable membranes, in: Cellular Neurobiology: A Practical Approach (J. Chad and H. Wheal, eds.), IRL/Oxford University Press, Oxford, pp. 247–275.

    Google Scholar 

  • Borg-Graham, L., 1995, The Surf-Hippo neuron simulation program [http://www.cnrs-gif.fr./iaf/iaf9/surf-hippo.html, v. 2.5].

  • Borg-Graham, L., Monier, C., and Frégnac, Y., 1996, Voltage-clamp measurements of visually-evoked conductances with whole-cell patch recordings in primary visual cortex, J. Physiol. (Paris) 90:185–188.

    CAS  Google Scholar 

  • Borg-Graham, L., Monier, C., and Frégnac, Y., 1998, Visual input evokes transient and strong shunting inhibition in visual cortical neurons, Nature 393:369–373.

    PubMed  CAS  Google Scholar 

  • Bower. J. M., and Beeman, D., 1994, The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural Simulation System, TELOS/Springer-Verlag, New York.

    Google Scholar 

  • Bower, J. M., and Koch, C., 1992, Experimentalists and modelers: Can we all just get along? Trends Neurosci. 15(11):458–461.

    PubMed  CAS  Google Scholar 

  • Brown, D., and Griffith, W., 1983a, Calcium activated outward current in voltage clamped hippocampal neurones of the guinea pig, J. Physiol. 337:287–301.

    PubMed  CAS  Google Scholar 

  • Brown, D., and Griffith, W., 1983b, Persistent slow inward calcium current in voltage clamped hippocampal neurones of the guinea pig, J. Physiol. 337:303–320.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., Gähwiler, B. H., Griffith, W. H., and Halliwell, J. V, 1990, Membrane currents in hippocampal neurons, in: Progress in Brain Research, Vol. 83 (J. Storm-Mathisen, J. Zimmer, and O. P. Ottersen, eds.), Elsevier, Amsterdam, pp. 141–160.

    Google Scholar 

  • Brown, T. H., Fricke, R. A., and Perkel, D. H., 1981, Passive electrical constants in three classes of hippocampal neurons, J. Neurophysiol. 46(4):812–827.

    PubMed  CAS  Google Scholar 

  • Brown, T. H., Zador, A. M., Mainen, Z. F., and Claiborne, B. J., 1992, Hebbian computations in hippocampal dendrites and spines, in: Single Neuron Computation (T. McKenna, J. Davis, and S. F. Zor-netzer, eds.), Academic Press, Boston, pp. 81–116.

    Google Scholar 

  • Buckmaster, P. S., Strowbridge, B. W., and Schwartzkroin, P. A., 1993, A comparison of rat hippocampal mossy cells and CA3c pyramidal cells, J. Neorophysiol. 70(4):1281–1299.

    CAS  Google Scholar 

  • Burgi, P.-Y., and Gryzwacz, N. M., 1994, Model based on extracellular potassium for spontaneous synchronous activity in developing retina, Neural Computation 6:983–1004.

    Google Scholar 

  • Bush, P. C., and Sejnowski, T. J., 1991, Simulations of a reconstructed cerebellar purkinje cells based on simplified channel kinetics, Neural Computation 3:321–332.

    Google Scholar 

  • Bush, P. C., and Sejnowski, T. J., 1994, Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells, J. Neurophysiol. 71(6):2183–2193.

    PubMed  CAS  Google Scholar 

  • Caeser, M., Brown, D. A., Gähwiler, B. H., and Knöpfel, T., 1993, Characterization of a calcium-dependent current generating a slow afterdepolarization of CA3 pyramidal cells in rat hippocampal slice cultures, Eux J. Neurosci. 5:560–569.

    CAS  Google Scholar 

  • Campbell, L. W., Hao, S., Thibault, C, Blalock, E. M., and Landfield, P. W., 1996, Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons, J. Neurosci. 16:6286–6295.

    PubMed  CAS  Google Scholar 

  • Cantrell, A. R., Ma, J. V, Scheuer, T., and Catterall, W. A., 1996, Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons, Neuron 16:1019–1026.

    PubMed  CAS  Google Scholar 

  • Carnevale, N. T., Tsai, K. Y., and Claiborne, B. J., 1995, Qualitative electrotonic comparison of three classes of hippocampal neurons in the rat, in: Neurobiology of Computation (J. Bower, ed.), Kluwer, Boston, Vol. 4, pp. 67–72.

    Google Scholar 

  • Charpak, S., Gähwiler, B. H., Do, K. Q., and Knöpfel, T., 1990, Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters, Nature 347:765–767.

    PubMed  CAS  Google Scholar 

  • Christie, B. R., Eliot, L. S., Ito, K, Miyakawa, H., and Johnston, D., 1995, Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx, J. Neurophysiol. 73(6):2553–2557.

    PubMed  CAS  Google Scholar 

  • Church, J., 1992, A change from HCO3-CO2-to HEPES-buffered medium modifies membrane properties of rat CA1 pyramdical neurones in vitro, J. Physiol. 455:51–71.

    PubMed  CAS  Google Scholar 

  • Claiborne, B. J., Zador, A. M., Mainen, Z. F., and Brown, T. H., 1992, Computational models of hippocampal neurons, in Single Neuron Computation (T. McKenna, J. Davis, and S. F. Zornetzer, eds.), Academic Press, Boston, pp. 61–80.

    Google Scholar 

  • Colbert, C. M., and Johnston, D., 1996, Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons, J. Neurosci. 16(21):6676–6686.

    PubMed  CAS  Google Scholar 

  • Colbert, C. M., and Johnston, D., 1998, Protein kinase C activation decreases activity-dependent attenuation of dendritic Na+ current in hippocampal CA1 pyramidal neurons, J. Neurosci. 79(1):491–495.

    CAS  Google Scholar 

  • Colbert, C. M., Magee, J. C, Hoffman, D. A., and Johnston, D., 1997, Slow recovery from inactivation of Na+ channels underlies the activity-dependent attentuation of dendritic action potentials in hippocampal CA1 pyramidal neurons, J. Neurosci. 17(17):6512–6521.

    PubMed  CAS  Google Scholar 

  • Colino, A., and Halliwell, J. V., 1987, Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin, Nature 328:73–77.

    PubMed  CAS  Google Scholar 

  • Colino, A., and Halliwell, J. V., 1993, Carbachol potentiates Q current and activates a calcium-dependent non-specific conductance in rat hippocampus in-vitro, Eur.J. Neurosci. 5:1198–1209.

    PubMed  CAS  Google Scholar 

  • Colino, A., Garcia-Seoane, J. J., and Valentin, A., 1998, Action potential braodening induced by lithium may cause a presynaptic enhancement of excitatory synaptic transmission in neonatal rat hippocampus, Eur.J. Neurosci. 10:2433–2443.

    PubMed  CAS  Google Scholar 

  • Colquhoun, D., and Hawkes, A. G., 1995, The principles of the stochastic interpretation of ion-channel mechanism, in: Single-Channel Recording, 2nd ed. (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 397–482.

    Google Scholar 

  • Connors, B. W., and Gutnick, M. J., 1990, Intrinsic firing patterns of diverse neocortical neurons, Trends Neurosci. 13(3):99–104.

    PubMed  CAS  Google Scholar 

  • Cooley, J., and Dodge, F., 1966, Digital computer solutions for excitation and propagation of the nerve impulse, Biophys. J. 6:583–589.

    PubMed  CAS  Google Scholar 

  • Crépel, V., Aniksztejn, L., Ben-Ari, Y., and Hammond, C., 1994, Glutamate metabotropic receptors increase a Ca2+-activated nonspecific cationic current in CA1 hippocampal neurons, J. Neurophysiol. 72(4):1561–1569.

    PubMed  Google Scholar 

  • Grill, W. E., 1996, Persistent sodium current in mammalian central neruons, Annu. Rev. Physiol. 58:349–362.

    Google Scholar 

  • Cummins, T. R., Xia, Y, and Haddad, G. G., 1994, Functional properties of rat and human neocortical voltage-sensitive sodium currents, J. Neurophysiol. 71(3):1052–1064.

    PubMed  CAS  Google Scholar 

  • Debanne, D., Guérineau, N. C, Gähwiler, B. H., and Thompson, S. M., 1997, Action potential propagation gated by an axonal IA-like K+ conductance in hippocampus, Nature 389:286–289.

    PubMed  CAS  Google Scholar 

  • De Schutter, E. D., 1992, A consumer guide to neuronal modeling software, Trends Neurosti. 15(11):462–464.

    Google Scholar 

  • De Schutter, E., and Bower, J. M., 1994, An active membrane model of the cerebellar Purkinje cell I. Simulation of current clamps in slice, J. Neurophysiol. 71(3):375–400.

    PubMed  Google Scholar 

  • Deisz, R. A., 1996, A tetrodotoxin-insensitive sodium current initiates burst firing of neocortical neurons, Neuroscience 70(2):341–351.

    PubMed  CAS  Google Scholar 

  • Destexhe, A., Mainen, Z. F., and Sejnowski, X., 1994, Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism, J. Comput. Neurosci. 1:195–230.

    PubMed  CAS  Google Scholar 

  • Destexhe, A., Contreras, D., Steriade, M. D., Sejnowski, T., and Huguenard,J., 1995, In vivo, in vitro and computational analysis of dendritic calcium currents in thalamic reticular neurons, J. Neurosci. 16(1):169–185.

    Google Scholar 

  • Deuchars, J., and Thomson, A. M., 1996, CA1 pyramid-pyramid connections in rat hippocampus in-vitro: Dual intracellular recordings with biocytin filling, Neuroscience 74(4):1009–1018.

    PubMed  CAS  Google Scholar 

  • Doerner, D., Abdel-Latif, M., Rogers, T. B., and Alger, B. E., 1990, Protein kinase C-dependent and-independent effects of phorbol esters on hippocampal calcium channel current, J. Neurosci. 10(5):1699–1706.

    PubMed  CAS  Google Scholar 

  • Eder, C, Klee, R., and Heinemann, U., 1996, Modulation of A-currents by [K+]o in acutely isolated pyramidal neurones of juvenile rat entorhinal cortex and hippocampus, Neuroreport 7:1565–1568.

    PubMed  CAS  Google Scholar 

  • el-Mallakh, R. S., and Wyatt, R. J., 1995, The Na, K-ATPase hypothesis for bipolar illness, Biol. Psychiatry 37(4):235–244.

    PubMed  CAS  Google Scholar 

  • Evans, J. D., Kember, G. C., and Major, G., 1992, Techniques for obtaining analytical solutions to the multicylinder somatic shunt cable model for passive neurones, Biophys. J. 63:350–365.

    PubMed  CAS  Google Scholar 

  • Ficker, E., and Heinemann, U., 1992, Slow and fast transient potassium currents in cultured rat hippocampal cells, J. Physiol. 445:431–445.

    PubMed  CAS  Google Scholar 

  • Figenschou, A., Hu, G.-Y., and Storm, J. F., 1996, Cholinergic modulation of the action potential in rat hippocampal neurons, Eur. J. Neurosci. 8:211–219.

    PubMed  CAS  Google Scholar 

  • Fisher, R. E., Gray, R., and Johnston, D., 1990, Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons, J. Neurophysiol. 64(l):91–104.

    PubMed  CAS  Google Scholar 

  • Foster, W. R., Ungar, L. H., and Schwaber, J. S., 1993, Significance of conductances in Hodgkin-Huxley models, J. Neurophysiol. 70(6):2502–2518.

    PubMed  CAS  Google Scholar 

  • Fraser, D. D., and MacVicar, B. A., 1996, Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons, J. Neurosci. 16(13):4113–4128.

    PubMed  CAS  Google Scholar 

  • French, C., and Gage, P., 1985, A threshold sodium current in pyramidal cells in rat hippocampus, Neurosci;. Lett. 56:289–293.

    PubMed  CAS  Google Scholar 

  • French, C, Sah, P., Buckett, K.J., and Gage, P., 1990, A voltage-dependent persistent sodium current in mammalian hippocampal neurons, J. Gen. Physiol. 95:1139–1157.

    PubMed  CAS  Google Scholar 

  • Fukuda, A., and Prince, D. A., 1992, Postnatal development of electrogenic sodium pump activity in rat hippocampal pyramidal neurons, Dev. Brain Res. 65:101–114.

    CAS  Google Scholar 

  • Galdzicki, Z., Coan, E., and Rapoport, S. I., 1993, Cultured hippocampal neurons from trisomy 16 mouse, a model for Down’s syndrome, have an abnormal action potential due to a reduced inward sodium current, Brain Res. 604:69–78.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., 1993, All hands to the sodium pump, J. Physiol. 462:1–30.

    PubMed  CAS  Google Scholar 

  • Goldstein, S. A. N., and Colatsky, T. J., 1996, Ion channels: Too complex for rational drug design? Neuron 16:913–919.

    PubMed  CAS  Google Scholar 

  • Grove, E. A., and Halliwell, J. V., 1990, Two inward rectifier currents revealed in CA1 neurones of the rat hippocampus in vitro, J. Physiol. 424:46P.

    Google Scholar 

  • Haas, H. L., Jefferys, J. G. R., Slater, N. T., and Carpenter, D. O., 1984, Modulation of low calcium induced field bursts in the hippocampus by monoamines and cholinomimetics, Eur. J. Physiol. 400:28–33.

    CAS  Google Scholar 

  • Hagiwara, S., and Byerly, L., 1981, Calcium channel, Annu. Rev. Neurosci. 4:69–125.

    PubMed  CAS  Google Scholar 

  • Haglund, M. M., and Schwartzkroin, P. A., 1990, Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices, J. Neurophysiol. 63(2):225–239.

    PubMed  CAS  Google Scholar 

  • Halliwell, J., and Adams, P., 1982, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250:71–92.

    PubMed  CAS  Google Scholar 

  • Halliwell, J. V., Othman, I. B., Pelchen-Matlhews, A., and Dolly, J. O., 1986, Central action of dendrotox-in: Selective reduction of a transient K conductance in hippocampus and binding to localized receptors, Proc. Natl. Acad. Sci. USA 83:493–497.

    PubMed  CAS  Google Scholar 

  • Harris, K. M., Jensen, F. E., and Tsao, B., 1992, Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: Implications for the maturation of synaptic physiology and long-term potentiation, J. Neurosci. 12:2685–2705.

    PubMed  CAS  Google Scholar 

  • Henze, D. A., Cameron, W. E., and Barrionuevo, C., 1996, Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells, J. Camp. Neurol. 369:331–344.

    CAS  Google Scholar 

  • Hess, P., and Tsien, R., 1984, Mechanism of ion permeation through calcium channels, Nature 3:453–456.

    Google Scholar 

  • Hille, B., 1992, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer, Sunderland, MA.

    Google Scholar 

  • Hines, M., 1984, Efficient computation of branched nerve equations, Int. J. Bio-Med. Computing 15:69–76.

    CAS  Google Scholar 

  • Hines, M., 1992, NEURON—A program for simulation of nerve equations, in: Neural Systems: Analysis and Modeling (F. Eeckman, ed.), Kluwer, Boston, Vol. 2, pp. 127–136 [http://www.nnc.yale.edu/HTML/YALE/NNC/neuron/neuron.html].

  • Hines, M., and Carnevale, N. X, 1994, Computer simulation methods for neurons, in: The Handbook of Brain Theory and Neural Networks (M. Arbib, ed.), MIT Press, Cambridge, pp. 226–230.

    Google Scholar 

  • Hodgkin, A. L., 1976, Chance and design in electrophysiology: An informal account of certain experiments on nerve carried out between 1934 and 1952, J. Physiol. 263:1–21.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. 116:449–472.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117:500–544.

    PubMed  CAS  Google Scholar 

  • Hoehn, K-, Watson, T. W. J., and MacVicar, B. A., 1993, A novel tetrodotoxin-insensitive, slow sodium current in striatal and hippocampal neurons, Neuron 10:543–552.

    PubMed  CAS  Google Scholar 

  • Hoffman, D. A., and Johnston, D., 1998, Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC, J. Neurosci. 18(10):3521–3528.

    PubMed  CAS  Google Scholar 

  • Hoffman, D. A., Magee. J. C, Colbert, C. M., and Johnston, D., 1997, K+ channel regulation of signal propagation in dendrites of hippocampal pyrmidal neurons, Nature 87:869–875.

    Google Scholar 

  • Holmes, W. R., and Levy, W. B., 1990, Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes, J. Neurophysiol. 63(5):1148–1168.

    PubMed  CAS  Google Scholar 

  • Holmes, W. R., and Rall, W., 1992a, Electrotonic length estimates in neurons with dendritic tapering or somatic shunt, J. Neurophysiol. 68(4):1421–1437.

    PubMed  CAS  Google Scholar 

  • Holmes, W. R., and Rall, W., 1992b, Electrotonic models of neuronal dendrites and single neuron computation: in: Single Neuron Computation (T. McKenna. J. Davis, and S. F. Zornetzer, eds.), Academic Press, Boston, pp. 7–25.

    Google Scholar 

  • Holmes, W. R., and Rall, 1992c, Estimating the electrotonic structure of neurons with compartmental models, J. Neurophysiol. 68(4):1438–1452.

    PubMed  CAS  Google Scholar 

  • Holmes, W. R., Segev, I., and Rall, W., 1992, Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures, J. Neurophysiol. 68(4):1401–1420.

    PubMed  CAS  Google Scholar 

  • Hotson, J. R., and Prince, D. A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43(2):409–419.

    PubMed  CAS  Google Scholar 

  • Hotson, J. R., Prince, D., and Schwartzkroin, P., 1979, Anomalous inward rectification in hippocampal neurons, J. Neurophysiol. 42:889–895.

    PubMed  CAS  Google Scholar 

  • Huguenard.J. R., and McCormick, D. A., 1992, Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons, J. Neurophysiol. 68(4):1373–1400.

    PubMed  Google Scholar 

  • Huguenard, J. R., Hamill, O. P., and Prince, D. A., 1988, Developmental changes in Na+ conductances in rat neocortical neurons: Appearance of a slowly inactivating component, J. Neurophysiol. 59(3):778–795.

    PubMed  CAS  Google Scholar 

  • Ikemoto, Y., Ono, K., Yoshida, A., and Akaike, N., 1989, Delayed activation of large-conductance Ca2+-activated K channels in hippocampal neurons of the rat, Biophys. J. 56:207–212.

    PubMed  CAS  Google Scholar 

  • Jack, J. J. B., Noble, D., and Tsien, R. W., 1983, Electric Current Flow in Excitable Cells, Clarendon Press, Oxford.

    Google Scholar 

  • Jaffe, D. B., Johnston, D., Lasser-Ross, N., Lisman, J. E., Miyakawa, H., and Ross, W. N., 1992, The spread of Na+ spikes determines the pattern of dendritic Ca++ entry into hippocampal neurons, Nature 357:244–246.

    PubMed  CAS  Google Scholar 

  • Jaffe, D. B., Ross, W. N., Lisman, J. E., Lasser-Ross, N., Miyakawa, H., and Johnston, D., 1994, A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements, J. Neurophysiol. 71(3):1065–1077.

    PubMed  CAS  Google Scholar 

  • Jensen, M. S., Azouz, R., and Yaari, Y., 1994, Variant firing patterns in rat hippocampal pyramidal cells modulated by extracelluar potassium, J. Neurophysiol. 71(3):831–839.

    PubMed  CAS  Google Scholar 

  • Jensen, M. S., Azouz, R., and Yaari, Y., 1996, Spike after-depolarization and burst generation in adult rat hippocamplal CA1 pyramidal cells, J. Physiol. 492:199–210.

    PubMed  CAS  Google Scholar 

  • Jensen, O, Idiart, M. A., and Lisman, J. E., 1996, Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: Role of fast NMDA channels, Learning Memory 3:243–256.

    PubMed  CAS  Google Scholar 

  • Johnston, A. R., Black, C, Fraser, J., and MacLeod, N., 1997, Scrapie infection alters the membrane and synaptic properties of mouse hippocampal CA1 pyramidal neurones, J. Physiol. 500(l):1–15.

    PubMed  CAS  Google Scholar 

  • Johnston, D., and Brown, T., 1983, Interpretation of voltage-clamp measurements in hippocampal neurons, J. Neurophysiol. 50(2)2:464–486.

    PubMed  CAS  Google Scholar 

  • Johnston, D., Hablitz, J., and Wilson, W., 1980, Voltage clamp discloses slow inward current in hippocampal burst-firing neurones, Nature 286:391–393.

    PubMed  CAS  Google Scholar 

  • Johnston, D., Magee, J. C, Colbert, C. M., and Christie, B. R., 1996, Active properties of neuronal dendrites, Annu. Rev. Neurosci. 19:165–186.

    PubMed  CAS  Google Scholar 

  • Jones, S. W., 1989, On the resting potential of isolated frog sympathetic neurons, Neuron 3:153–161.

    PubMed  CAS  Google Scholar 

  • Jung, H.-Y, Mickus, T., and Spruston, N., 1997, Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons, J. Neurosci. 17(17):6639–6646.

    PubMed  CAS  Google Scholar 

  • Kaczmarek, L. K., and Levitan, I. B., eds., 1987, Neuromodulation: The Biochemical Control of Neuronal Excitability, Oxford University Press, Oxford.

    Google Scholar 

  • Kandel, E. R., and Spencer, W. A., 1961, Electrophysiology of hippocampal neurons: IV. Fast pre-potentials, J. Neurophysiol. 24:272–285.

    Google Scholar 

  • Katz, B., 1949, Les constantes electriques de la membrane du muscle, Arch. Sci. Physiol. 3:285–299.

    CAS  Google Scholar 

  • Kay, A. R., 1991, Inactivation kinetics of calcium current of acutely dissociated CA1 pyramidal cells of the mature guinea-pig hippocampus, J. Physiol. 437:27–48.

    PubMed  CAS  Google Scholar 

  • Kay, A. R., and Wong, R. K. S., 1987, Calcium current activation kinetics in isolated pyramidal neurones of the CA1 region of the mature guinea-pig hippocampus, J. Physiol. 392:603–616.

    PubMed  CAS  Google Scholar 

  • Kettenmann, H., and Grantyn, R., eds., 1992, Practical Electrophysiological Methods, Wiley-Liss, New York.

    Google Scholar 

  • Knöpfel, T., Brown, D. A., Vranesic, I., and Gähwiler, B. H., 1989, Depression of Ca2+ activated potassium conductance by muscarine and isoproternenol without alteration of depolarization-induced transient rise in cytosolic free Ca2+ in hippocampal CA3 pyramidal cells, Eur. J. Neurosci. Suppl. 2.

    Google Scholar 

  • Koch, C, Poggio, T., and Torre, V., 1983, Nonlinear interactions in a dendritic tree: Localization, timing, and role in information processing, Proc. Natl. Acad. Sci. USA 80:2799–2802.

    PubMed  CAS  Google Scholar 

  • Köhler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., Maylie, J., and Adelman, J. P., 1996, Small-conductance, calcium-activated potassium channels from mammalian brain, Science 273:1709–1714.

    PubMed  Google Scholar 

  • Konnerth, A., Lux, H. D., and Heinemann, U., 1986, Ionic properties of burst generation in hippocampal pyramidal cells, in: Calcium Electrogenesis and Neuronal Functioning (U. Heinemann, M. Klee, E. Neher, and W. Singer, eds.), Springer-Verlag, Berlin, pp. 368–374.

    Google Scholar 

  • Kuo, C. C., and Bean, P. B., 1994, Na+ channels must deactivate to recover from inactivation, Neuron 12:819–829.

    PubMed  CAS  Google Scholar 

  • Lancaster, B., and Adams, P., 1986, Calcium dependent current generating the afterhyperpolarization of hippocampal neurons, J. Neurophysiol. 55:1268–1282.

    PubMed  CAS  Google Scholar 

  • Lancaster, B., and Nicoll, R. A., 1987, Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones, J. Physiol. 389:187–203.

    PubMed  CAS  Google Scholar 

  • Lancaster, B., and Zucker, R. S., 1994, Photolytic manipulation of Ca2+ and the time course of slow, Ca2+-activated K+ current in rat hippocampal neurones, J. Physiol. 475(2):229–239.

    PubMed  CAS  Google Scholar 

  • Lancaster, B., Nicoll, R. A., and Perkel, D. J., 1991, Calcium activates two types of potassium channels in rat hippocampal neurons in culture, J. Neurosci. 11(23):23–30.

    PubMed  CAS  Google Scholar 

  • Landfield, P. W., and Pitler, T. A., 1984, Prolongation of calcium-dependent afterhyperpolarizations in hippocampal neurons in aged rats, Science 226:1089–1091.

    PubMed  CAS  Google Scholar 

  • Lanthorn, T., Storm, J., and Anderson, P., 1984, Current to frequency transduction in CA1 hippocampal pyramidal cells: Slow prepotentials dominate the primary range firing, Exp. Brain Res. 53:431–443.

    PubMed  CAS  Google Scholar 

  • Läuger, P., 1991, Electrogenic Ion Pumps, Sinauer, Sunderland, MA.

    Google Scholar 

  • Lipowsky, R., Gillessen, T., and Alzheimer, C., 1996, Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells, J. Neurophysiol. 76(4):2181–2191.

    PubMed  CAS  Google Scholar 

  • Lisman, J., 1996, Bursts as a unit of neural information: Making unreliable synapses reliable, Trends Neurosci. 20(l):38–43.

    Google Scholar 

  • Llinás, R., Sugimori, M., and Silver, R. B., 1995, Time resolved calcium microdomains and synaptic transmission, J. Physiol. (Paris) 89:77–81.

    Google Scholar 

  • Lüthi, A., Gähwiler, B. H., and Gerber, U., 1996, A slowly inactivating potassium current in CA3 pyramidal cells of rat hippocampus üin-vitro, J. Neurosci. 16(2):586–594.

    PubMed  Google Scholar 

  • Lytton, W. W., and Sejnowski, T. J., 1991, Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons, J. Neurosci. 66(3):1059–1079.

    CAS  Google Scholar 

  • Maccaferri, G., Mangoni, M., Lazzari, A., and DiFrancesco, D., 1993, Properties of the hyperpolarization-activated current in rat hippocampal CA1 cells, J. Neurophysiol. 69(6):2129–2136.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., 1985, Depolarizing prepotential are Na+ dependent in CA1 pyramidal neurons, Brain Res. 333:378–381.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., and Nicoll, R. A., 1984, Control of repetitive discharge of rat CA1 pyramidal neurones in vitro, J. Physiol. 354:319–331.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., Malenka, R. C., and Nicoll, R. A., 1986, Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells, Nature 321:695–697.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., Fox, A. P., and Tsien, R. W., 1987a, Adenosine reduces an inactivating component of calcium current in hippocampal CA3 neurons, Biophys. J. 51:30a.

    Google Scholar 

  • Madison, D. V., Lancaster, B., and Nicoll, R. A., 1987b, Voltage clamp analysis of cholinergic action in the hippocampus, J. Neurosci. 7(3):733–741.

    PubMed  CAS  Google Scholar 

  • Magee, J. C., and Johnson, D., 1995, Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons, J. Physiol. 487(l):67–90.

    PubMed  CAS  Google Scholar 

  • Magee, J. C., and Johnston, D., 1995b, Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons, Science, 268:301–304.

    PubMed  CAS  Google Scholar 

  • Magee, J. C, Avery, R. B., Christie, B. R., and Johnston, D., 1996, Dihydropyridine-sensitive, voltagegated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons, J. Neurophysiol. 76(5):3460–3470.

    PubMed  CAS  Google Scholar 

  • Magee, J., Hoffman, D., Colbert, C., and Johnston, D., 1998, Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons, in: Ann. Rev. Physiol. 60:327–346.

    CAS  Google Scholar 

  • Mainen, Z. F., and Sejnowski, T. J., 1996, Influence of dendritic structure on firing patterns in model neocortical neurons, Nature 382:363–366.

    PubMed  CAS  Google Scholar 

  • Mainen, Z. F., Joerges, J., Huguenard, J. R., and Sejnowski, 1995, A model of spike initiation in neocortical pyramidal neurons, Neuron 15:1427–1439.

    PubMed  CAS  Google Scholar 

  • Mainen, Z. F., Carnevale, N. T., Zador, A. M., Claiborne, B. J., and Brown, T. H., 1996, Electrotonic architecure of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions, J. Neurophysiol. 76(3):1904–1923.

    PubMed  CAS  Google Scholar 

  • Major, G., Larkman, A. U., Jonas, P., Sakmann, B., and Jack, J. J. B., 1994, Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices, J. Neurosci. 14(8):4613–4638.

    PubMed  CAS  Google Scholar 

  • Malenka, R. C, Lancaster, B., and Zucker, R. S., 1992, Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation, Neuron 9:121–128.

    PubMed  CAS  Google Scholar 

  • Marty, A., and Neher, E., 1995, Tight-seal whole-cell recording, in: Single-Channel Recording, 2nd ed. (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 31–51.

    Google Scholar 

  • Mascagni, M., and Sherman, A. S., 1998, Numerical methods for neuronal modeling, in: Methods in Neuronal Modeling (C. Koch and I. Segev, eds.), MIT Press/Bradford Books, Cambridge, MA, Vol. 2.

    Google Scholar 

  • Masukawa, L. M., and Hansen, A., 1987, Regional distribution of voltage-dependent single channel conductances in cultured hippocampal neurons from the rat, Neurosci;. Abstr. 13:1442.

    Google Scholar 

  • Masukawa, L., and Prince, D., 1984, Synaptic control of excitability in isolated dendrites of hippocampal neurons, J. Neurosci. 4(l):217–227.

    PubMed  CAS  Google Scholar 

  • Masukawa, L. M., Benardo, L. S., and Prince, D. A., 1982, Variations in electrophysiological properties of hippocampal neurons in different subfields, Brain Res. 242:341–344.

    PubMed  CAS  Google Scholar 

  • Masukawa, L. M., Hansen, A. J., and Shepard, G., 1991, Distribution of single-channel conductances in cultured rat hippocampal neurons, Cell. Mol. Neurobiol. 11(2):231–243.

    PubMed  CAS  Google Scholar 

  • McCormick, D. A., and Pape, H. C., 1990, Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones, J. Physiol. 431:291–318.

    PubMed  CAS  Google Scholar 

  • McKenna, T., Davis, J., and Zornetzer, S. F., eds., 1992, Single Neuron Computation, Academic Press, Boston

    Google Scholar 

  • McManus, O. B., and Magleby, K. L., 1989, Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large-conductance Ca-activated K channel, J. Gen. Physiol. 94:1037–1070.

    PubMed  CAS  Google Scholar 

  • Meier, C. L., and Dudek, F. E., 1996, Spontaneous and stimulation-induced synchronized burst after-discharges in the isolated CA1 of kainate-treated rats, J. Neurophysiol. 76(4):2231–2239.

    PubMed  CAS  Google Scholar 

  • Mel, B., 1994, Information processing in dendritic trees, Neural Computation 6:1031–1085.

    Google Scholar 

  • Migliore, M., Cook, E. P., Jaffe, D. B., Turner, D. A., and Johnston, D., 1995, Computer simulations of morphologically reconstructed CA3 hippocampal neurons, J. Neurophysiol. 73(3):1157–1168.

    PubMed  CAS  Google Scholar 

  • Miyakawa, H., Ross, W. N., Jaffe, D., Callaway, J. C, Lasser-Ross, N., Lisman, J. E., and Johnston, D., 1992, Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels, Neuron 9:1163–1173.

    PubMed  CAS  Google Scholar 

  • Moczydlowski, E., and Latorre, R., 1983, Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers, J. Gen. Physiol. 82:511–542.

    PubMed  CAS  Google Scholar 

  • Moore, J., Stockbridge, N., and Westerfield, M., 1983, On the site of impulse initiation in a neurone, J.Physiol. 336:301–311.

    PubMed  CAS  Google Scholar 

  • Müller, W., and Lux, H. D., 1993, Analysis of voltage-dependent membrane currents in spatially extended neurons from point-clamp data, J. Neurophysiol. 69(l):241–247.

    PubMed  Google Scholar 

  • Nakajima, Y., Nakajima, S., Leonard, R. J., and Yamaguchi, K., 1986, Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons, Proc. Natl. Acad. Sci. USA 83:3022–3026.

    PubMed  CAS  Google Scholar 

  • Nowycky, M., Fox, A., and Tsien, R., 1985, Three types of neuronal calcium channel with different calcium agonist sensitivity, Nature 316:440–443.

    PubMed  CAS  Google Scholar 

  • Numann, R. E., Wadman, W. J., and Wong, R. K. S., 1987, Outward currents in single hippocampal cells obtained from the adult guinea-pig, J. Physiol. 393:331–353.

    PubMed  CAS  Google Scholar 

  • Ogata, N., and Tatebayashi, H., 1990, Sodium current kinetics in freshly isolated neostriatal neurones of the adult guinea pig, Eur.J. Physiol. 416:594–603.

    CAS  Google Scholar 

  • Okuhara, D. Y., and Beck, S. G., 1994, 5-HT1A receptor linked to inward-rectifying potassium current in hippocampal CA3 pyramidal cells, J. Neurophysiol. 71(6):2161–2167.

    PubMed  CAS  Google Scholar 

  • Owen, D. G., 1987, Three types of inward rectifier currents in cultured hippocampal neurones, Neurosci. Lett. Suppl. 29:S18.

    Google Scholar 

  • Pallotta, B. S., and Wagoner, P. K., 1992, Voltage-dependent potassium channels since Hodgkin and Huxley, Physiol. Rev. Suppl. 72(4):S49–S67.

    CAS  Google Scholar 

  • Pape, H. C, 1996, Queer current and pacemaker: The hyperpolarization-activated cation current in neurons, Annu. Rev. of Physiol.58:299–32

    CAS  Google Scholar 

  • Patlak, J., 1991, Molecular kinetics of voltage-dependent Na+ channels, Physiol. Rev. 71(4):299–327.

    Google Scholar 

  • Pedarzani, P., and Storm, J., 1993, PKA mediates the effects of monomamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons, Neuron 11:1–20.

    Google Scholar 

  • Pedarzani, P., and Storm, J., 1995a, Dopamine modulates the slow Ca2+-activated current I AHP] via cyclic AMP-dependent protein kinase in hippocampal neurons, J. Neurophysiol. 74(6):2749–27

    PubMed  CAS  Google Scholar 

  • Pedarzani, P., and Storm, J., 1995b, Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP, Proc. Natl. Acad. Sci. USA 92:11716–11720.

    PubMed  CAS  Google Scholar 

  • Pedarzani, P., and Storm, J. F., 1996, Interaction between α-and β-adrenergic receptor agonists modulating the slow Ca2+-activated K+ current IAHPin in hippocampal neurons, Eur.J. Neurosci. 8:2098–2110.

    PubMed  CAS  Google Scholar 

  • Perkins, K. L., and Wong, R. K. S., 1995, Intracellular QX-314 blocks the hyperpolarization-activated inward current I q in hippocampal CA1 pyramidal cells, J. Neurophysiol. 73(2):911–915.

    PubMed  CAS  Google Scholar 

  • Pongracz, F., Poolos, N. P., Kocsis, J. D., and Shepherd, G. M., 1992, A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons, J. Neurophysiol. 68(6):2248–2259.

    PubMed  CAS  Google Scholar 

  • Pyapali, G. K., and Turner, D. A., 1994, Denervation-induced dendritic alterations in CA1 pyramidal cells following kainic acid hippocampal lesions in rats, Brain Res. 652:279–290.

    PubMed  CAS  Google Scholar 

  • Qian, N., and Sejnowski, T. J., 1989, An electro-diffusion model for branching dendrites, spines and axons, Biol. Cybernet. 62:1–15.

    Google Scholar 

  • Qian, N., and Sejnowski, T. J., 1990, When is an inhibitory synapse effective? Proc. Natl. Acad. Sci. 87:8145–8149.

    PubMed  CAS  Google Scholar 

  • Quadroni, R., and Knöpfel, T., 1994, Compartmental models of Type A and Type B guinea pig medial vestibular neurons, J. Neurophysiol. 72(4):1911–1924.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1989, Cable theory for dendritic neurons, in: Methods in Neuronal Modeling (C. Koch and I. Segev, eds.), MIT Press/Bradford Books, Cambridge, MA, pp. 9–62.

    Google Scholar 

  • Rall, W., Burke, R. E., Holmes, W. R., Jack, J. J. B., Redman, S. J., and Segev, I., 1992, Matching dendritic neuron models to experimental data, Physiol. Rev. Suppl. 72(4):S159–S186.

    CAS  Google Scholar 

  • Rapp, M., Yarom, Y., and Segev, I., 1996, Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells, proc. Natl. Acad. Sci. USA 93:11985–11990.

    PubMed  CAS  Google Scholar 

  • Reid, K. H., Edmonds, H. L., Schurr, A., Tseng, M. T., and West, C. A., 1988, Pitfalls in the use of brain slices, Prog. Neurobiol. 31(1):1–18.

    PubMed  CAS  Google Scholar 

  • Regehr, W. G., and Tank, D. W., 1992, Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells, J. Neurosci. 12(11):4202–4223.

    PubMed  CAS  Google Scholar 

  • Rhodes, P. A., and Gray, C. M., 1994, Simulations of intrinsically bursting neocortical pyramidal neurons, Neural Computation 6:1086–1110.

    Google Scholar 

  • Roberts, W. M., Jacobs, R. A., and Hudspeth, A. J., 1990, Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells, J. Neurosci. 10(11):3664–3684.

    PubMed  CAS  Google Scholar 

  • Robitaille, R., Garcia, M. L., Kaczorowski, G. J., and Charlton, M. P., 1993, Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release, Neuron 11:645–655.

    PubMed  CAS  Google Scholar 

  • Roper, S. N., Obenaus, A., and Dudek, F. E., 1993, Increased propensity for nonsynaptic epileptiform activity in immature rat hippocampus and dentate gyrus, J. Neurophysiol. 70(2):857–862.

    PubMed  CAS  Google Scholar 

  • Rose, C. R., and Ransom, B. R., 1997, Regulation of intracellular sodium in cultured rat hippocampal neurones, J. Physiol. 499(3):573–587.

    PubMed  CAS  Google Scholar 

  • Rudy, B., 1988, Diversity and ubiquity of K channels, Neuroscience 25(3):729–749.

    PubMed  CAS  Google Scholar 

  • Sagar, A., and Rakowski, R. F., 1994, Access channel model for the voltage dependence of the forward-running Na+/K+ pump, J. Gen. Physiol. 103(5):869–893.

    PubMed  CAS  Google Scholar 

  • Sah, P., 1996, Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation, Trends Neurosci. 19(4):150–154.

    PubMed  CAS  Google Scholar 

  • Sah, P., and Bekkers, J. M., 1996, Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: Implications for the integration of long-term potentiation, J. Neurosci. 16(15):4537–4542.

    PubMed  CAS  Google Scholar 

  • Sah, P., Gibb, A. J., and French, C., 1988a, Potassium current activated by depolarization of dissociated neurons from adult guinea pig hippocampus, J. Gen. Physiol. 92:263–278.

    PubMed  CAS  Google Scholar 

  • Sah, P., Gibb, A. J., and Gage, P. W., 1988b, The sodium current underlying action potentials in guinea pig hippocampal CA1 neurons, J. Gen. Physiol. 91:373–398.

    PubMed  CAS  Google Scholar 

  • Sakmann, B., and Neher, E., eds., 1995, Single-Channel Recording, 2nd ed., Plenum Press, New York.

    Google Scholar 

  • Scharfman, H. E., 1993, Spiny neurons of area CA3c in rat hippocampal slices have similar electro-physiological characteristics and synaptic responses despite morphological variation, Hippocampus 3(l):9–28.

    PubMed  CAS  Google Scholar 

  • Schiegg, A., Gerstner, W., Ritz, R., and Leo van Hammen, J., 1995, Intracellular Ca2+ stores can account for the time course of LTP induction: A model of Ca2+ dynamics in dendritic spines, J. Neurophysiol. 74(3):1046–1055.

    PubMed  CAS  Google Scholar 

  • Schiller, J., Helmchen, F., and Sakmann, B., 1995, Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones, J. Physiol. 487(3):583–600.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P., 1977, Further characteristics of hippocampal CA1 cells in vitro, Brain Res.128:53–68.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and M. Slawsky, 1977, Probable calcium spikes in hippocampal neurons, Brain Res.135:157–16

    PubMed  CAS  Google Scholar 

  • Segal, M., and Barker, J., 1984, Rat hippocampal neurons in culture: Potassium conductances, J. Neurophysiol. 51(6):1409–1433.

    PubMed  CAS  Google Scholar 

  • Segal, M., and Barker, J., 1986, Rat hippocampal neurons in culture: Calcium and calcium-dependent potassium conductances, J. Neurophysiol. 55(4):751–766.

    PubMed  CAS  Google Scholar 

  • Segal, M., Rogawski, M., and Barker, J., 1984, A transient potassium conductance regulates the excitability of cultured hippocampal and spinal neurons, J. Neurosci. 4(2):604–609.

    PubMed  CAS  Google Scholar 

  • Segev, I., 1992, Single neuron models: Oversimple, complex and reduced, Trends Neurosci. 15(11):414–421.

    PubMed  CAS  Google Scholar 

  • Segev, I., Rapp, M., Manor, Y, and Yarom, Y, 1992, Analog and digital processing in single nerve cells: Dendritic integration and axonal propagation, in: Single Neuron Computation (T. McKenna, J. Davis, and S. F. Zornetzer, eds.), Academic Press, Boston, pp. 173–198.

    Google Scholar 

  • Segev, I., Burke, R. E., and Hines, M., 1998, Compartmental models of complex neurons, in: Methods in Neuronal Modeling (C. Koch and I. Segev, eds.), MIT Press/Bradford Books, Cambridge, MA, pp. 63–96.

    Google Scholar 

  • Sherman, A., Keizer, J., and Rinzel, J., 1990, Domain model for Ca2+-inactivation of Ca2+ channels at low channel density, Biophys. J. 58:985–995.

    PubMed  CAS  Google Scholar 

  • Sherman-Gold, R., ed., 1993, The Axon Guide, Axon Instruments, Foster City, CA.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J., 1981, Biometry: The Principles and Practice of Statistics in Biological Research, Freeman, San Francisco.

    Google Scholar 

  • Spigelman, I., Zhang, L., and Carlen, P. L., 1992, Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: Membrane excitability and K+ currents, J. Neurophysiol. 68(l):55–69.

    PubMed  CAS  Google Scholar 

  • Spruston, N., and Johnston, D., 1992, Perforated patch-clamp analysis of the passive membrane properties of three classes of hipppocampal neurons, J. Neurophysiol. 67(3):508–529.

    PubMed  CAS  Google Scholar 

  • Spruston, N., Jaffe, D. B., Williams, S. H., and Johnston, D., 1993, Voltage-and space-clamp errors associated with the measurement of electrotonically remote synaptic events, J. Neurophysiol. 70(2):781–802.

    PubMed  CAS  Google Scholar 

  • Spruston, N., Schiller, Y, Stuart, G., and Sakmann, B., 1995, Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites, Science 268:297–300.

    PubMed  CAS  Google Scholar 

  • Staley, K. J., Otis, T. S., and Mody, I., 1992, Membrane properties of dentate gyrus granule cells: Comparison of sharp microelectrode and whole-cell recordings, J. Neurophysi l. 67(5):1346–1358.

    CAS  Google Scholar 

  • Stasheff, S. F., Hines, M., and Wilson, W. A., 1993, Axon terminal hyperexcitability associated with eplieptogenesis in vitro. I. Origin of ectopic spikes, J. Neurophysiol. 70(3):961–975.

    PubMed  CAS  Google Scholar 

  • Steinhüauser, C, Tennigkeit, M., Matthies, H., and Gündel, J., 1990, Properties of the fast sodium channels in pyramidal neurones isolated from the CA1 and CA3 areas of the hippocampus of postnatal rats, Pflügers Arch. Eur. J. Physiol. 415:756–761.

    Google Scholar 

  • Stockbridge, N., and Moore, J. W., 1984, Dynamics of intracellular calcium and its possible relationship to phasic transmitter release and facilitation at the frog neuromuscular junction, J. Neurosci. 4(3):803–811.

    PubMed  CAS  Google Scholar 

  • Stockley, E. W., Cole, H. M., Brown, A. D., and Wheal, H. V., 1993, A system for quantitative morphological measurement and electrotonic modelling of neuron: Three-dimensional reconstruction, J. Neurosci. Meth. 47:39–51.

    CAS  Google Scholar 

  • Storm, J. F., 1986, A-current and Ca-dependent transient outward current control the initial repetitive firing in hippocampal neurons, Biophys. J. 49:369a.

    Google Scholar 

  • Storm, J. F., 1987a, Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells, J. Physiol. 385:733–759.

    PubMed  CAS  Google Scholar 

  • Storm, J. F., 1987b, Intracellular injection of a Ca2+ chelator inhibits spike repolarization in hippocampal neurons, Brain Res. 435:387–392.

    PubMed  CAS  Google Scholar 

  • Storm, J. F., 1988a. Four voltage-dependent potassium currents in adult hippocampal pyramidal cells (HPCs), Biophys. J. 53:148a.

    Google Scholar 

  • Storm, J. F., 1988b, Temporal integration by a slowly inactivating K+ current in hippocampal neurons, Nature 336:379–381.

    PubMed  CAS  Google Scholar 

  • Storm, J. F., 1989, An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells, J. Physiol. 409:171–190.

    PubMed  CAS  Google Scholar 

  • Storm, J. F., 1990, Potassium currents in hippocampal pyramidal cells, in: Progress in Brain Research, Vol. 83 (J. Storm-Mathisen, J. Zimmer, and O. P. Otterson, eds.), Elsevier, Amsterdam, pp. 161–187.

    Google Scholar 

  • Storm, J. F., Borg-Graham L., and Adams, P. R., 1987, A passive component of the afterdepolarization (ADP) in rat hippocampal pyramidal cells, Biophys. J., 51:65a.

    Google Scholar 

  • Storm, J. F., Winther, T., and Pedarzani, P., 1996, h-current modulation by norepinephrine, serotonin, dopamine, histamine and cyclic-AMP analogues in rat hippocampal neurons, Neurosci. Abstr. 22:1444.

    Google Scholar 

  • Stuart, G. J., and Sakmann, B., 1994, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature 367:69–72.

    PubMed  CAS  Google Scholar 

  • Stuart, G., Spruston, N., Sakmann, B., and Hausser, M., 1997, Action potential initiation and back-propagation in neurons of the mammalian CNS, Trends Neurosci. 20(3):125–131.

    PubMed  CAS  Google Scholar 

  • Thibault, O., and Landfield, P. W., 1996, Increase in single L-type calcium channels in hippocampal neurons during aging, Science 272:1017–1020.

    PubMed  CAS  Google Scholar 

  • Thompson, S. M., and Gähwiler, B. H., 1992, Organotypic hippocampal slice cultures, in: Practical Electrophysiological Methods (H. Kettenmann and R. Grantyn, eds.), Wiley-Liss, New York, pp. 58–61.

    Google Scholar 

  • Thompson, S. M., and Prince, D. A., 1986, Activation of electrogenic sodium pump in hippocampal CA1 neurons following glutamate-induced depolarization, J. Neurophysiol. 56(2):507–522.

    PubMed  CAS  Google Scholar 

  • Thompson, S. M., Masukawa, L. M., and Prince, D. A., 1985, Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro, J. Neurosci. 5(3):817–824.

    PubMed  CAS  Google Scholar 

  • Tinoco, Jr., I., Sauer, K., and Wang, J. C., 1978, Physical Chemistry: Principles and Applications in Bioloical Sciences. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Toib, A., Lyakhov, V., and Marom, S., 1998, Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels, J. Neurosci. 18(5):1893–1903.

    PubMed  CAS  Google Scholar 

  • Traub, R., 1982, Simulation of intrinsic bursting in CA3 hippocampal neurons, Neuroscience 7(5):1233–1242.

    PubMed  CAS  Google Scholar 

  • Traub, R., and Llinas, R., 1979, Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis, J. Neurophysiol. 42(2):467–496.

    Google Scholar 

  • Traub, R. D., and Miles, R., 1991, Neuronal Networks of the Hippocampus, Cambridge University Press, Cambridge.

    Google Scholar 

  • Traub, R. D., Wong, R. K. S., Miles, R., and Michelson, H., 1991, A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances, J. Neurophysiol. 66(2):635–650.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., Jefferys, J. G. R., Miles, R., Whittington, M. A., and Tóth, K., 1994, A branching dendritic model of a rodent CA3 pyramidal neurone, J. Physiol. 481(l):79–95.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., Whittington, M. A., Colling, S. B., Buzsáki, G., and Jefferys, J. G. R., 1996, Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo, J. Physiol. 493(2):471–484.

    PubMed  CAS  Google Scholar 

  • Tsai, K. Y., Carnevale, N. T., Claiborne, B. J., and Brown, T. H., 1994, Efficient mapping from neuro-anatomical to electrotonic space, Network 5:21–46.

    Google Scholar 

  • Turner, D., 1984a, Conductance transients onto dendritic spines in a segmental cable model of hippocampal neurons, Biophys. J. 46:85–96.

    PubMed  CAS  Google Scholar 

  • Turner, D., 1984b, Segmental cable evaluation of somatic transients in hippocampal neurons (CA1,CA3, and dentate), Biophys. J. 46:73–84.

    PubMed  CAS  Google Scholar 

  • Turner, D., and Schwartzkroin, P. A., 1980, Steady-state electrotonic analysis of intracellularly stained hippocampal neurons, J. Neurophysiol. 44(1):184–199.

    PubMed  CAS  Google Scholar 

  • Turner, D., and Schwartzkroin, P. A., 1984, Passive electrotonic structure and dendritic properties of hippocampal neurons, in: Brain Slices (R. Dingledine, ed.), Plenum Press, New York, pp. 25–50.

    Google Scholar 

  • Turner, R. W., Meyers, D. E. R., Richardson, T. L., and Barker, J. L., 1991, The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons, J. Neurosci. 11(7):2270–2280.

    PubMed  CAS  Google Scholar 

  • Turner, D. A., Li, X.-G., Pyapali, G. K., Ylinen, A., and Buzsaki, G., 1995, Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo, J. Comp. Neurol. 356:580–594.

    PubMed  CAS  Google Scholar 

  • Uneyma, H., Ueno, S., and Akaike, N., 1993, Serotonin-operated potassium current in CA1 neurons dissociated from rat hippocampus, J. Neurophysiol. 69(4):1044–1052.

    Google Scholar 

  • Valiante, T. A., Velazquez, J. L., Jahromi, S. S., and Carlen, P. L., 1995, Coupling potentials in CA1 neurons during calcium-free-induced field burst activity, Neurosci. 15(10):6946–6956.

    CAS  Google Scholar 

  • Vandenberg, C. A., and Bezanilla, F., 1991, A sodium channel gating model based on single-channel, macroscopic ionic, and gating currents in the squid giant axon, Biophys. J. 60:1511–1533.

    PubMed  CAS  Google Scholar 

  • Warman, E., Durand, D., and Yuen, G., 1994, Reconstruction of hippocompal CA1 pyramidal cell electrophysiology by computer simulation, J. Neurophysiol. 71(6):2033–2045.

    PubMed  CAS  Google Scholar 

  • Wathey, J. C, 1989, ntscable—Neuron anatomy file conversion program [Modified version available from http://www.cnrs-gif.fr/iaf/iaf9/Surf-Hippo.html].

  • Wathey, J. C, Lytton, W. W., Jester, J. M., and Sejnowski, T. J., 1992, Computer simulations of EPSP-spike (E-S) potentiation in hippocampal CA1 pyramidal cells, J. Neurosci. 12(2):607–618.

    PubMed  CAS  Google Scholar 

  • Westenbroek, R. E., Merrick, D. K., and Catterall, W. A., 1989, Differential subcellular localization of the R, and R,, Na+ channel subtypes in central neurons, Neuron 3:695–704.

    PubMed  CAS  Google Scholar 

  • White, J. A., Sekar, N. S., and Kay, A. R., 1995, Errors in persistent inward currents generated by space-clamp errors: A modeling study, J. Neurophysiol. 73(6):2369–2377.

    PubMed  CAS  Google Scholar 

  • Williamson, A., and Alger, B. E., 1990. Characterization of an early afterhyperpolarization after a brief train of action potentials in rat hippocampal neurons in vitro, J. Neurophysiol. 63(1):72–81.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159:385–390.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Prince, D. A., 1981, Afterpotential generation in hippocampal pyramidal cells, J. Neurophysiol. 45(1):86–97.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Nat. head. Sci. 76(2):986–990.

    CAS  Google Scholar 

  • Wong, R. K. S., Traub, R. D., and Miles, R., 1986, Cellular basis of neuronal synchrony in epilepsy, in Basic Mechanisms of the Epilepsies. Molecular and Cellular Approaches (A. V. Delgado-Esueta, A. A. Ward. Jr., D. M. Woodbury, and R. J. Porter, eds.), Raven Press, New York, pp. 583–592.

    Google Scholar 

  • Yamada, W. M., Koch, C, and Adams, P. R., 1989, Multiple channels and calcium dynamics, in: Methods in Neuronal Modeling (C. Koch and I. Segev, eds.), MIT Press/Bradford Books, Cambridge, MA, pp. 97–134.

    Google Scholar 

  • Yuen, G. L. F., and Durand, D., 1991, Reconstruction of hippocampal granule cell electrophysiology by computer simulation, Neuroscience 41(2/3):411–423.

    PubMed  CAS  Google Scholar 

  • Zador, A. M., 1993, Biophysics of computation in single hippocampal neurons, Ph.D. thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Zador, A., Koch, C., and Brown, T. H., 1990, Biophysical model of a hebbian synapse, Proc. Nat. Acad. Sci. USA 87:6718–6722.

    PubMed  CAS  Google Scholar 

  • Zador, A. M., Agmon-Snir, H., and Segev, I., 1995, The morphoelectrotonic transform: A graphical approach to dendritic function, J. Neurosci. 15(3):1669–1682.

    PubMed  CAS  Google Scholar 

  • Zbicz, K., and Weight, F., 1985, Transient voltage and calcium dependent outward currents in hippocampal CA3 pyramidal neurons, J. Neurophysiol. 53(4):1038–1058.

    PubMed  CAS  Google Scholar 

  • Zbicz, K., and Weight, F., 1986, Voltage-clamp analysis of inward calcium current in hippocampal CA3 pyramidal neurons, Neurosci. Abstr. 11:520.

    Google Scholar 

  • Zhang, L., Weiner, J. L., Valiante, T. A., Velumian, A. A., Watson, P. L., Jahromi, S. S., Schertzer, S., Pennefather, P., and Carlen, P. L., 1994, Whole-cell recording of the Ca2+-dependent slow afterhyperpolarization in hippocampal neurones: Effects of internally applied anions, Pflügers Arch. Eur. J. Physiol. 426:247–253.

    CAS  Google Scholar 

  • Zhang, L., Han, D., and Carlen, P. L., 1996, Temporal specificity of muscarinic synaptic modulation of the Ca2+-dependent K+ current (I 5AHP) in rat hippocampal neurones, J. Physiol. 496(2):395–405.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borg-Graham, L.J. (1999). Interpretations of Data and Mechanisms for Hippocampal Pyramidal Cell Models. In: Ulinski, P.S., Jones, E.G., Peters, A. (eds) Models of Cortical Circuits. Cerebral Cortex, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4903-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4903-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7223-3

  • Online ISBN: 978-1-4615-4903-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics